Generation of realistic consumer populations
for electrical demand simulation
in the context of the smart grid

g\
, s
=\ - ECCS’2012
=\
T '\I;- f\\:'_ Samuel THIRIOT ~ EDF R&D
=" L Enrique KREMERS EIFER
t s B - Wolfgang HAUSER  Stuttgart University




Introduction

- Agent-based simulations for energy systems require as an
Input both:

— the structure of the system (a network or graph) and
— the attributes of the agents (or nodes)

- Moreover, the agents are positionned over the network
according to their characteristics

- Generation of synthetic, networked populations involve two
steps:

— generate a population of agents (that represent energy
consumers) with realistic attributes

— position them over a network according to their attributes
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- In a previous work, authors

cumulatedSIM — ——— weightedSLP — — refrigerators ovens/stoves

washing-machines —-— —- tumblers dishwashers lighting

- Parameters of this model include a list of the devices of each
household, and the corresponding usage of these appliances
(the « synthetic population »)

- Data:

«s we previously conducted a survey on 769 households [3]. Data
includes household usage rates, sociodemographics and
lifestyle issues.

« Objective: extrapolate « smartly » this sample to large synthetic
population sizes to be used into simulations
- This case is representative of most data-driven agent-based
simulations in which data is rare and costly



First approach:

Hand-made generation of attributes
(without network)



Main approaches to population generation
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Aggregating data

- We rejected population resizing in order to avoid errors
caused by the low size of our sample.

— for instance, this ~700 sample contains a household with 1
adult and 12 children

— extrapolated to 10,000 households => 15 of such an
household, which is actually rare in the actual population.

- We aggregate data by detecting correlations, based on:

— common sense: « the number of showers may probably

depends on the number of people in the household or the
number of children »

— statistical analysis: « does the income determines the number
of showers ? »

— number of samples in the cross analysis: too few correlations,
reject the correlation



nrshowers_class * npers Crosstabulation

npers
1 2 3 4 5 6 Total

nrshowers_class Count 12 22 1 6 1 0 42
% within npers 4,2% 4,5% 7% 4,2% 2,6% ,0% 3,8%

0 to 4 Count 108 137 15 18 2 2 282

% within npers 37,6% 28,0% 10,6% 12,7% 51% 16,7%  25,4%

10 to_14 Count 18 188 41 25 10 3 285

% within npers 6,3% 384% 289% 17,6% 25,6% 25,0%  25,6%

15 to_19 Count 1 12 28 15 7 0 63

% within npers ,3% 24% 19,7% 10,6% 17,9% ,0% 5,7%

20 to 24 Count 0 3 26 25 6 1 61

% within npers ,0% 6% 18,3% 17,6%  15,4% 8,3% 5,5%

25 to 29 Count 0 0 2 23 3 1 29

% within npers ,0% ,0% 1,4%  16,2% 7,7% 8,3% 2,6%

30 to_34 Count 0 1 0 4 1 1 7

% within npers ,0% 2% ,0% 2,8% 2,6% 8,3% ,6%

35_to_39 Count 0 0 0 0 6 0 6

% within npers ,0% ,0% ,0% ,0%  15,4% ,0% ,5%

40 _more Count 0 0 0 1 1 1 3

% within npers ,0% ,0% ,0% 7% 2,6% 8,3% ,3%

5109 Count 148 127 29 25 2 3 334

% within npers 51,6% 25,9% 20,4% 17,6% 51% 250%  30,0%

Total Count 287 490 142 142 39 12 1112

% within npers  100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%

Example of crosstabulation using SPSS; note the low number
of cases in some cells



Choice of correlations

- The survey data is processed using the SPSS software

- for instance, for computing the number of showers, we
detected:

— p(nbshowers | nbpeople): the number of showers mainly
depend on the number of people

— p(nbpeople): for generating a population, we will use the
frequency distribution of the number of people

- Feedback:

— on small samples (even for 700 households !), we have to rely
only on first-order correlations

— The use of aggregate statistics facilitates the correction of
aberrant cases (by manually correcting some probabilities)



Application

- Algorithm: monte-Carlo sampling:

— for each household to create

— randomly select the value of the lifestyle according to
p(lifestyle),

— randomly select the value of the number of showers
according to p(nbshowers | lifestyle)

- Does work, but:

— we have to encode the generation of the population by ourself;
this increase the risk of programming errors or artifacts

— It provides no solution for the generation of the network
according to agents’ attributes

— => we explore the use of a standalone generic tool for the
generation of networked populations [2]



Second approach:

use of a generic tool to generate both
attributes and a network
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The YANG approach

- The YANG approach [2] is devoted to the generation of
synthetic networked populations.

- It provides:

— a meta-model for describing the attributes of individuals and
probabilistic generation rules for creating links according to the
properties of agents

— an algorithm for the generation (we ignore the generation of
networks in the frame of this study), and and open-source
graphical tool for using it

— a measure of generation errors



Encoding of attributes

- Attributes are encoded as random variables with conditional
probabilities into a Bayesian network (same principle with a
graphical representation)

%] nrkinden Properties =]
Properties | Probabilities | attributes
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- Then YANG uses the same Monte-Carlo principe as ours for
generating the population
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Generation of networks

- principle: households are not positioned randomly over the
distribution network; for instance, rural areas often contain
bigger households

- YANG enables the description of rules for creating links; these
rules describe the probability to create a link given the
attributes of individuals

- First experiment:

— we add agents that represent distribution hubs of the network,
— all the agents are spatialized over 5 fictive spatial areas,

— households are connected to distribution hubs of their area,

— distribution hubs are interconnected by a random electric grid
— household size depends on the spatial location

- Let’'s browse an example of generated network
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- Zoom on this
network;
household and
hubs have the
same location as
expected
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- There is now
an
homogeneity in
the size of
households
per distribution
hub
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Discussion

and future work
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Discussion

= In short:

— the use of aggregate statistics facilitate the correction of data
(reduce the statistical impact of aberrant cases)

— however, on such a small sample, we can rarely correlate more
than two variables

— the use of a generic tool facilitates prototyping of networks by
positionning the agents according to their characteristics

- This opens the way to the reproduction of load curves at the
meso level (hubs, spatial areas);

- Next steps:

— retrieve data on the correlation between household types and
their location over a distribution network,

— reproduce the differences in lifestyles at this local scale
(heterogeneity in building isolation, work periods, etc.) and its
impact on the load curve



Thanks.
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