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ABSTRACT

In this paper, we propose an agent-based model of human
decision making: CODAGE (Cognitive Decision AGEnt).
Classical Decision Theories have been widely used in multi-
agent systems, but imply a too rational behavior when faced
with real-world human data. Moreover, classical model usu-
ally exceeds human capabilities. Therefore, we derived our
decision model from several cognitive psychological theories
(e.g. Simon’s decision theory, Montgomery’s search of dom-
inance structure, etc.) to take human bounded rationality
into account. While most of existing cognitive agents use
the BDI framework, we propose a new kind of architecture.
In the CODAGE model, the decision maker is modeled by
an entire multi-agent system, where each agent is in charge
a particular sub-process of the whole decision. The archi-
tecture is intended to be as generic as possible. It could be
viewed as an agent-based decision framework, in which dif-
ferent decision heuristics and biases could be implemented.
We illustrate this approach with a simulation of a small ex-
perimental financial market, for which our model was able
to replicate some human decision behaviors.
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1.2.11 [Artificial Intelligence]: Distributed Artificial In-
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1. INTRODUCTION

Multi-agent systems (MAS) have been already used to
model human decision making processes (e.g [19, 17]), and
many successful applications have been derived from these
works in various fields (e.g. economics [14], electronic com-
merce [7]). MAS seem appealing for human decision making
because they capture the two levels of decision processes: the
individual level (i.e. agent level), where each decision pro-
cess could be modeled, from the reactive to the more cogni-
tive one ; and the collective level (i.e. system level), where
one has to model interactions among agents, communication
between them, coordination, etc. For instance, in the field
of Computational Economics, most works used rather reac-
tive (zero-intelligence or zero-intelligence plus) agents and
large-scale interactions in order to exhibit interesting mar-
ket properties [14]. Other works would use more cognitive
agents, mostly based on the BDI (Belief Desire Intentions)
architecture [17].

When reactive (or zero-intelligence) agents are used, the
emphasis is made on emergence: from a simple individual
computation process, a global collective behavior emerges.
This is consistent with the Artificial Life principles, stating
that most of the complex phenomenon we observe in our
world should be built from the bottom-up. This approach
offers a variety of behaviors and phenomena at the macro-
scopic level. For instance, in the case of Financial Market
Simulations, with few equations, reactive models could lead
to equilibrium, oscillations, non equilibrium states, bubbles,
that is to many phenomena observed in the real world at
the macroscopic level. However, when one needs to explain
these phenomena at the agent-miscroscopic level, the reac-
tive approach suffers from its limitations to model the in-
formation processes the human agent may have used in the
real world. In order to understand and explain complex
social human functions (real markets, organization dynam-
ics, coalition formation), more complex (i.e. more cognitive)
models of human mind and actions are needed [4].

In the case of decision making, where can this more com-
plex (more cognitive) theory be found ? In the last years,
Classical Decision Theory and Game Theory have been used
to design multi-agent systems. This includes classical (e.g.
utility-based) theory models, extension of utilities, and
Markovian Decision Processes (see [19] for a review), and
yields several interesting applications. However, most of
them are not compatible with the limitations of human ca-
pabilities, as stated by Simon with his concept of bounded
rationality. Decision and Game Theories usually imply op-



timization processes, while agents are to explore a quasi-
infinite (or exponential-growth) search space. And even if
one relaxes this request of optimality, cognitive psychology
has shown that humans violate most of the principles under-
lying Decision Theory Models. These works in psychology
have been initiated by the seminal theories of Kahneman
and Tversky, where the focus is made on the heuristics a
decision maker used and the biases he/she had during a de-
cision process [10]. Many recent models of decision making
are based on these psychological facts, and focus on infor-
mation processing [13].

This is the path we want to take. To do so, we follow a
methodology based on what we called earlier psychomime-
tism [11]: (i) we need a cognitive model of decision based
on psychological facts that have shown to be consistent with
experimental observations, and (ii) we need to implement
this cognitive model within an artificial system as faithfully
as possible, so that the behavior of the artificial system gives
some insights on the real-human cognitive process.

The remainder of this paper is organized as follows. In
the next section, we present the cognitive model used in
CODAGE, and then we give its implementation as a MAS
architecture in section 3. To illustrate how CODAGE works,
we present some results from an experimental financial mar-
ket simulation in section 4. Finally, we conclude this paper
with a discussion on our results, limitations and future work.

2. COGNITIVE MODEL

2.1 Simon’s Descriptive Approach

There are three basic types of models: descriptive model,
prescriptive and normative. Descriptive models tell us what
people do or have done, prescriptive models suggest what
people should and can do, and normative models tell us what
people should ideally do (in theory). A typical example of
normative theory is the Classical Decision Theory we men-
tioned above. In this paper we focus on descriptive theory,
that is we try to model real-world human decision making.
Broadly speaking, decision making could be defined as the
cognitive process of selecting a course of action from among
multiple alternatives. However, it should not be reduced to
a simple selection of prototyped behavior or a case-based
reasoning process, that is to a “déja vu” kind of strategy.
Decision Making is a construction process: the decision is
built based on complex information processing mechanisms,
and deals with various forms of knowledge representations
(e.g. features, criteria, rules, etc.). Moreover, this process
implies a commitment to the selected action.

To clarify what a decision making process is, we adopt the
framework introduced by Simon in 1960 [22], as depicted in
Figure 1. The decision process includes three steps. Intel-
ligence means here the understanding of the decision situa-
tion, that it to identify what the decision is about (the need
for a decision), the problem we have to solve and the context.
Once this environment has been searched, the design phase
begins, where a deep analysis of the problem domain and
context leads to the identification of all possible options and
alternatives. The final choice phase is the selection of the
most appropriate course of action from the set of possible
alternatives produced by the design phase.

The Choice phase may include an optimization process
(choosing the best alternative) or not. According to the
Satisficing model proposed by Simon[21], the decision maker

Figure 1: Decision Making as a three-step process
(from Simon, 1960)

will chose the alternative that exceeds a particular criterion.
Not surprisingly, the Satisficing model is fully consistent
with Simon’s idea of human Bounded Rationality[20]: hu-
mans have limited cognitive capacities, they usually are not
able to optimize in most situations. A descriptive model of
decision-making should take these limitations into account.

Finally, one should note that the decision process depicted
in Figure 1 is not linear, as it includes feedback loops at each
phase. For instance, the alternatives construction at the
design phase might need further intelligence. Moreover, each
phase incorporate a decision-making process itself, making
Simon’s decision model a quite complex system. From this
framework, many models have been proposed (e.g. see [6,
13] for some reviews). Let us now present our decision model
we implemented in CODAGE, which brings a synthesis of
several cognitive theories.

2.2 Our decision model

The decision model implemented in CODAGE starts from
the three phases of Simon’s descriptive theory we described
above:

Intelligence: due to limited perception abilities and thanks
to its experience!, the decision maker has the ability to
quickly select the important informations. For instance,
he/she might be more attentive to an information concern-
ing himself or inducing some emotional reaction. The per-
ception of the decision environment is based on a highly
selective attentional process. The importance of attentional
process in our model partly derives from the framing ef-
fects, as first observed by Kahneman and Tversky, where
the formulation of a problem drastically influenced decision
strategy [23]. This is because subjects focus primarily on a
limited number of aspects (e.g. gain or loss in Kahneman
and Tversky’s experiments) and give the highest importance
at these aspects to design alternatives and choose one of
them. The concept of salience of information implements
this principle (Cf. section 3.1.2). Moreover, we incorpo-
rate an anchoring mechanism, where some information is
not continuously encoded : there is a set of relevant discrete
value around which the decision maker anchors his/her judg-
ment. This is consistent with the anchoring and adjustment
heuristic observed in psychology of decision making [10].

Design: due to its bounded rationality, the decision maker
cannot represent the whole world, he/she cannot produce
all consequences and all possible actions. However, he/she
needs an ability to anticipate short-term events, that is not

! As in many modeling works on decision making, we assume
our decision maker to be what psychologist called an expe-
rienced subject. This subject is familiar with the decision
task and has developed particular skills to solve similar prob-
lems. An experienced subject is not necessarily an expert,
but never a novice.



only design a set of alternatives, but also produce some con-
sequences of these alternatives. This will be implemented in
CODAGE with a partial tree of alternatives where only some
branches will be computed and explored (Cf. section 3.1.3).

Choice: in order to chose a satisficing alternative with-
out requiring an optimization process, we adopt a heuristic
proposed by Montgomery, the Search for Dominance Struc-
ture (SDS) [16]. Broadly speaking, the dominance struc-
ture is made of selected attributes that represent the good
arguments by which one alternative dominates the others.
The decision maker processes the information (the set of at-
tributes) in order to find a dominant alternative. If one is
found, it is chosen. Otherwise, he/she will look at a different
set of attributes and alternatives. We present in section 3.2
our agent-based implementation of SDS.

Finally we slightly depart from the information flow in
Simon’s phase model. Instead of a sequential process com-
bined with feedback loops between each phase, we view the
three phases as a fully concurrent and parallel process. As
soon as some information is perceived, the building of the
alternatives tree starts and will be updated continuously as
new information are coming. In parallel, dominance struc-
tures are built and as soon as one satisfying decision is
found, the whole process is stopped to make the final de-
cision. Hence this concurrency mechanism enables to take
bounded capacities into account, by preventing the decision
maker from exploring useless alternatives.

To sum up, our decision model incorporates the Simon’s
phase model augmented by five mechanisms:

- selective attention (salience) ;
- anchoring ;

- partial tree of alternatives ;

- search for dominance ;

- concurrency.

3. THE CODAGE MACRO-AGENT

In this section, we propose an agent architecture to imple-
ment our cognitive decision model. Broadly speaking, the
CODAGE agent is a macro-agent managed by a cognitive
multi-agent architecture. Let us first give some intuitions
that support this idea. In section 2.2, we described our
decision model with five mechanisms we incorporate into
Simon’s model. These mechanisms could be viewed as mod-
ules of decision subprocesses. As suggested by the concur-
rency mechanism, we do not believe in a sequential organi-
zation of theses modules. On the contrary, we claim that
most of decision subprocesses are autonomous entities that
interact at different phases of the decision process. Let us
take the example of anchoring. In trading, round values (e.g.
50) are easier to be memorized and might be favored as deci-
sion thresholds. This number anchoring effect will not only
bias the perception process, but also the alternative choice
and probably the dominance search (round numbers will be
favored to be the attributes of the dominance structure).
Given our concurrency mechanism, we adopt the “Minsky’s
Society of Mind” point of view [15] and propose to model
all these subprocess modules as autonomous agents in inter-
actions.

The MAS comprises a set of specialized agents, we call
micro-agents in order to distinguish them from the CODAGE
macro-agent they belong to, and a tree of alternatives im-
plemented as a blackboard system to facilitate information
sharing, as depicted in Figure 3 below.

3.1 Knowledge representation

3.1.1 Facts

In CODAGE, we represent facts with a set of attributes,
values, and predicates. For instance in a trading game,
$capital [capital_euros]=2501.2 means that the attribute
“capital” has a value of 2501.2 and this numerical value is
typed as “capital_euros”;
buy_proposition(alice,3,14.5) encodes the fact that Al-
ice proposed to buy 3 stocks at 14.5 euros each. We add
two important mechanisms to encode the information pro-
cessing prescribed by our cognitive model : salience and tree
of alternatives.

3.1.2 Salience

The salience? of a fact represents its importance within
the selective attention process. Each micro-agent ma of
global agent pool P can vote to set the salience of a knowl-
edge K within an alternative C' (context, i.e. a possible
state of the world). We denotes vyma,ix,c € [0, 1] the result-
ing value of such a vote. If the value is strictly positive, K
is added to C with the corresponding salience value vy, x,c
if K is new to C ; if K is already instantiated in C, then its
value is simply updated in the equation 1 that gives the final
value Sk c of the salience of a given knowledge K within the
context of an alternative C' as the mean of the micro-agents
” votes:

Zmaep VUma,K,C
= eard(P) M

Neurobiology supposes that a salient fact is processed more
quickly than an non-salient one [8]. In our model, knowledge-
source agents will focus their attention on salient facts. This
is implemented with two kinds of delays: an event propaga-
tion delay dk,c, which causes agents to be warned later for
non-salient facts, and a reaction delay dr,c for each rule R
activable in a knowledge-source agent.

The propagation delay is 0 if the salience is 1, and rises
to a maximum level () if the salience is 0. We use the
following function:

Sk,c =

Skc—1
d = —7. (| = 2
e K (SK,C+1) )
Figure 2 shows how this delay evolves in function with
salience.
Let Agr,c be the activation of a rule R in alternative con-

text C. It equals the mean of premise ’s saliences:

ZﬂePremises(R) Sm,C
card(Premises(R))

3)

ARrc =

The agent reaction delay is inspired by the ACT-R theory [1,
p.1043]:

dro =1+ Fe Ar:C (4)

where I = 597ms and F' = 890ms.
Finally, the total information propagation delay of knowl-
edge K in context C' is given by:

Skc—1
Sk.c+1

2Several psychological studies support the concept of
salience. Due to lack of space, we suggest this review of
salience effects [9]

tdix,c = dx,c+dr,c = —7. < >+I+F6*AR=C (5)




Figure 2: Propagation delay as a function of salience
(v =10)

Our mechanism of propagation delay has two major ben-
efits:
- the system is more robust to information permutation:
even if a low-salient information is added prior to a
high-salient one, the latter will be considered first.

- it enables the partial exploration of the tree of alterna-
tives, since the micro-agents will act based upon the
most salient facts. Alternatives based on low-salient
facts will not lead to further consequences exploration.

3.1.3 Tree of Alternatives (TA)

In CODAGE, the knowledge that the decision-maker has
about the world is encoded into a decision tree®, as the one
depicted in Figure 4.

Each node is an alternative that represents a possible state
of the world (past, current or future). TA is a decision
tree, as in decision theory, but it will be only partially built
and explored to be consistent with bounded rationality. TA
works at a symbolic level: each alternative represents an
instantiation context in which each micro-agent may add a
fact and/or an action into the tree: this is a way to share
information between micro-agents. Each fact in the tree has
a salience that measure its degree of importance.

Arcs between alternatives nodes represent transitions in
time, that what produce the transition from one alternative
(parent) to another one (child). We implemented two types
of transitions that triggers the change to a new state of
world:

- action transition: a possible action, performed by the
macro-agent (myself)

- fact transition: the probability that some attribute
will have a certain value (e.g. the final stock value will
be 56.2 Euros at the closing of the market) or that an
other agent perform some action (e.g. bob has sold 5

TA fosks Be whskatad 4 6 Eermsstrd system. As one knows,

the opportunistic control of knowledge sources (the micro-
agents in our case), that is running the right agent on the

right data at the right time, is a tricky issue in blackboards [5].

In our model, there is no fixed agenda to select one agent at
a time: each agent is autonomous, and is able to modify data
on the decision tree whenever it needs to. From a computer
implementation point of view, it is a full multi-threading
process. To preserve data coherence and integrity inside the
tree, we implemented a mechanism to solve eventual con-

3We do not assume that a human decision-maker actually
has such a decision tree inside his/her head. This is just a
convenient modeling tool to tackle alternatives management
in our model.

tradictions. Any agent can signal a contradiction inside a
given context C'. In this case, the blackboard removes the
two contradictory facts from C, creates two children of C
(C1 and C2) and instantiates the two incompatible facts in
two separated contexts. This method preserves the existence
of the two solutions while avoiding the contradictions.

3.2 Agents

Each agent encodes a subprocess of the decision system,
like an heuristic, an inference mechanism, perception, etc.

The perception agent (abbreviated as PER in the remain-
ing part of this paper) imports informations from environ-
ment: e.g. buy and sell orders, accepted transactions and so.
This knowledge is introduced at the root of the TA as sym-
bols, predicates and variables. Initial salience values are set,
depending on decision maker’s habits and experience (what
he/she is used to consider as important information)?.

The egocentric agent (EGO) helps the macro-agent to
selectively enhance the salience on every facts and actions
he/she is involved in (e.g. the orders he gave, the proposals
he made).

The world rules agent (WRU) contains the knowledge
about the world rules. It encodes the main rules and con-
straints within the environment like the possible actions (e.g.
in our simulated game, a trader can emit buy or sell order, or
cancel a previous order), the forbidden actions (e.g. to buy
with a null capital), and some anticipated consequences of
actions (e.g. if an order is accepted, capital and bids count
are updated according to a particular formula).

The expertise agent (EXP) contains a set of domain-
specific heuristics and strategies the decision maker may use
to perform his/her actions. In our example of a trading
game, these strategies will increase the salience of critical
attributes like total capital, gain and loss. They will give
the relevant hypothesis to explore, like buying or selling a
share. They also value the different facts (e.g. in term of
expected outcomes).

The anchoring agent (ANC) gives the set of anchoring
values, that will be used as reference points. In a predicate
where some attribute value is unknown, the anchoring agent
enumerates all possible values, and will propose to anchor
to an already perceived value or to a given reference-point
value, e.g. a value linked to the personal situation of the
decision maker, or a constant specific to the problem domain
(a national interest rate for instance).

The uncertainty agent (UNC) encodes the uncertainty of
informations in the TA. It (i) sets probability px for a fact K
to occur, and (ii) sets the probability Pr(C)) of alternative
context C' to occur in the real world.

The decision agent (DEC) monitors the decision tree and
implements the search for dominance. When an alternative
is added into the tree, it evaluates it. If this is a satisficing
solution, the tree building process is stopped, and the action
that created this branch is selected. If the alternative is too
low (the aggregated utility of this alternative is lower than
an elimination threshold), it is ignored. In other cases, the
alternative is considered to be studied later, and added to

4In real-world applications, we could ask some experienced
subjects to give their rankings importance for a set of do-
main facts, and derive the initial salience from this. How-
ever, when we will design a learning mechanism for the
salience, the importance of these initial values will be much
lowered (Cf. section 5.2 in the discussion)



an internal list. When this list is full, the alternative having
the highest aggregated utility is selected. We compute the
utility of an alternative A as follows :

AUA) =f( D

CeChild(A)

Pr(C).u(C)) (6)

where Child(A) is a the set of immediate children of A in the
tree. Pr(C) the probability given by UNC agent (see above)
and f is an utility normalization function, a numerical func-
tion valued in [0,1]. For instance, we could adopt CARA
(Constant Absolute Risk Aversion) function for risk-averse
subjects f(z) = —(1/p).e**, where p € [0,1] is a risking
factor.

The utility u(C') of an alternative C' is given using a clas-
sical multi-attribute utility model, where we use the salience
to weight each fact :

w(C) =Y pr.Sk.cv(K) (7)

KeC

where K is a knowledge fact in C, px his probability, and
v(K) its associated value (e.g. expected outcome) as given
by EXP agent. It is worth noticing this influence of salience
(computed by the other agents) into the decision process :
the most salient knowledge will have the highest weight in
the utility function.

3.3 Decision process overview

We summarize the decision process in CODAGE with the
flow charts depicted in Figure 3.

I'd
PER PER
e e
e e €GO | a4 o
WRU UNC WRU UNC
EXP EXP
(a) BEC  (b) DEC
PER PER
EGO EGO
UNC UNC
EXP
S
(c) DEC  (d) & Bre

Figure 3: CODAGE decision process overview

Intelligence (a) The perception agent represents the cur-
rent world in the root of the tree TA. (b) As soon as infor-
mation appears, the EGO agent look for personal concerns
and increases the corresponding saliences. Expertise agent
may also update salience based on new information and its
heuristics, while ANC agent increase the saliences of an-
chored values.

Design (c) Based on the most salient facts, agents use
the TA to simulate actions, and to anticipate events and
other decision maker’s actions in a short or medium term.
New alternatives are added to the TA, from EXP, WRU and
DEC among others.

Decision (d) In parallel with (b) and (c), the decision
agent assesses alternatives (utility computation), apply dom-
inance search that leads either to the choice of an action or
a selection of alternatives to be further explored.

4. SIMULATION RESULTS

4.1 Simulating an experimental market

This architecture has been instantiated in the economy
field. We did not reuse the classical benchmarks used by the
Agent-based Computationnal Economics community, like the
well-known Santa-Fe Artificial Stock Market (SF-ASM), since
we want to focus on cognitive aspects of decision-making
within a simulated market, while SF-ASM focus on con-
ditions of equilibrium and market behaviors using reactive
agents.

We have selected an experimental financial market con-
ducted by Biais, Hilton, Mazurier and Pouget [2]. This ex-
perimental market is aimed to study the effects of cognitive
biases on the decision of traders placed on a market under
asymmetric information. On this market, traders can pub-
lish at any time buy or sell orders (fixing the count and
the limit price), accept an offer or cancel a previous order.
There is a single risky asset, which pays a liquidating divi-
dend at the end of the game which can be A, B or C with
equal probability (in the experiment, 50, 240 and 490). Be-
fore trading starts the players receive heterogeneous private
signals. For instance, if the final dividend is B, half the par-
ticipants are privately informed it is not A, while the others
know it is not C. There exists no communication between
participants.

Hilton et al. suggest than the participants try to analyze
the actions of the others to find the final asset price. Traders
are reasoning in a high-uncertainty context, making them
more influenced by cognitive biases. The authors study
two biases : overconfidence and self-monitoring. Overconfi-
dence makes the decision-maker to overestimate the repre-
sentativity of his current informations. Traders suffering of
self-monitoring are more attentive to the image they present
to others, making them more manipulative.



buy_proposition( myself, 5.0, 12.2 ) (0.1)

buy_proposition( trader2, 3.0, 13.2) (0.0)

accepted_order( myself, trader2, 10.0, 115.2) (0.1)

sell_proposition( trader2, 3.0, 14.5 ) (0.0)

$eapital[capital_euros] = 2501.2 (0.25)

$actions_count[quantity] = 10.0 (0.25)

cancel_buy_order( myself, 12.2, 5.0 ) (0.1875)

puy_proposition( myself, 10, 20 } (0.5)

1

uy_proposition( myself, ¥, * ) (0.1)

$nb_actions[quantity] = 10.0 (0.25)

$nb_actions[quantity] = 10.0 (0.25)

$nb_actions[quantity] = 10.0 (0.25)

cancel_buy_order(myself, 12.2, 5.0 ) (0.1875)

$capital[capital_euros] = 2501.2 (0.25)

$capital[capital_euros] =2501.2 (0.25)

$capital[capital_euros] =2501.2 (0.25)

buy_proposition( myself, 10, 20 ) (0.5)

buy_proposition( myself, *, * ) (0.1)

Figure 4: A Tree of Alternatives

We implement the overconfidence bias in CODAGE. To
do so, we decrease the importance of initial probabilities (to
favor current informations). Giving p; the initial probability,
nb_observationsg the number of times K is observed by the
macro-agent, and total,b_observations the total number of
observations, the probability of a fact K is given by :

_ B.pi +nb_observationsk

(8)

The modification of the 8 parameter of UNC agent modifies
the sensitivity of personal experience. The self-monitoring
bias seemed to be too general to be implemented yet.

The other experimental settings are as follows. We use the
decision equations (7)-(8) described in section 3.2, with f set
to a simple mean function, and v(K) set to fixed randomly
chosen values (no prior knowledge). Finally, we use here
two instantiations of ANC agent : one for quantity values
anchoring, and the second for prices anchoring. Each ANC
agent only favor a set of discrete value (e.g. price value or
quantity value), according to a salience anchoring curves like
the one depicted in Figure 5. In this Figure, the quantity
values are discretized using a step equals to 5, other values
will a null salience value :

pr = B + total,b_observations

1 . .
auantiny

Figure 5: salience anchoring curve for quantity

4.2 Example of simulation

To see how CODAGE implements the experience described
above, let us examine a tree generated by our program de-

picted in Figure 4 above. The process that generated this
tree is the following:
- the perception agent added facts in the root alterna-
tive. At this time, no fact is salient, it is the raw
perception.

- when a fact is added, an event “NewNonSalientFactEvent”

is sent to all agents. Agents dealing with salience vote
for facts : EGO agent votes for all facts concerning this
trader, the ANC agents vote for salience according to
their own salience curve, and the EXP agent highlights
facts useful for trading (salience is displayed between
brackets on the figure).

- each time a salience is modified, an event “NewSalient-
FactEvent” is sent with a latency, computed using
Equation 5 . Each agent can react. Here, the WRU
agent has proposed to cancel a previous offer or to emit
a new buy order.

- when an agent proposes a new action, the TA copies
salient facts (over an given recopy threshold) in the
new alternative.

- WRU has added an incomplete predicate
buy_proposition(mysel f, *, *), which contains two un-
defined variables : count and price. The ANC agents
propose first the most salient values, here 10 unities
and 20.0.

- at each alternative modification, the DEC agent eval-
uates - if possible - the alternative, and selects it if it
is a satisficing one.

4.3 Overview of market simulation

An overview of the market simulation is displayed in Fig-
ure 6, which shows offers (plain) and demand (dotted) curves,
and the trades (squares). During a primarily period, the
agents put orders that are too riskless for being accepted
(low offers, high demands). Then the EXP agent modifies
salience of facts leading to a compromise (we supposed it was
one of the trader’s general heuristics). Traders will trade
on this basis. Since traders use values generated by ANC
agents, only anchored values will be used in the market.
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Figure 6: Biais et al. ’s market simulation (extract)

S. DISCUSSION

In this paper, we propose the CODAGE approach to model
human decision-making, where the decision-maker is mod-
eled with a multi-agent system. Following psychomimetism,
we designed a cognitive decision model based on psycholog-
ical theories. We implemented this model with a specific
multi-agent system architecture, made of a set of special-
ized cognitive agents that share information using a tree of
alternatives TA. We gave some simulation results, and have
shown how a cognitive bias could be implemented into the
system. Now that we have fully described our approach, it
is easier to compare to related works. Due to lack of space,
we limit this comparison to the most used cognitive archi-
tecture in MAS : BDIL.

5.1 CODAGE and BDI

Belief-Desire-Intention (BDI) agents have been very pop-
ular to implement cognitive processes, including decision
making [18, 17]. Based on the philosophical concepts of
intentions, plans and practical reason as developed by Brat-
man [3], it involves two important processes: deliberation
where the agent commits to a particular plan, and means-
end reasoning where the agent builds the possible options
(plans). The agent intends to do what will achieve its de-
sires (goals) given its beliefs about the world. An intention
means an action the agent commits to. The question arises
whether a BDI architecture could implement our cognitive
decision model, and to what extent the CODAGE agent
differs from the BDI framework. BDI and CODAGE do
have things in common. First, they both try to account for
bounded rationality: they incorporate partial exploration
of states (alternatives in CODAGE, plans in BDI). Second,
they both implement Simon’s three stages decision model:
in BDI, intelligence includes beliefs building and beliefs revi-
sion, design includes means-end reasoner to generate options
and filtering, and choice includes deliberation.

However, they differ from several points. At first, it
should be noted that BDI theory intends to capture rational
behavior as a combination of deliberative planning and alter-
natives selection. It is strongly goal-oriented, and is aimed to
produce plans, i.e. organizing a sequence of actions through
time. In CODAGE, we adopt a broader - more abstract

view of decision-making, where actions could be selective
(e.g. buying a particular stock at a given price) or more
complex (e.g. executing a plan). We focus on how possible
actions (alternatives) are built, explored, biased and inter-
act with other subprocess like perception and choice. We
propose a descriptive theory on how a decision-maker may
process information to do so. Second, CODAGE includes
several mechanisms derived from psychological theories of
decision-making (selective information, anchoring, search for
dominance, miscalibration bias) which is not the case in orig-
inal BDI architecture®. Last but not least, as we mentioned
above, BDI is a sequential process. In CODAGE, we believe
that most of the subprocesses involved in decision-making
are independent and concurrent, they influence each-other
at several phases within the Simon’s model and therefore
should be implemented as autonomous agents in interaction
within a MAS. At this early stage of our work, we are aware
that this strong concurrency assumption needs further vali-
dation (we discuss the validation issue in 5.2 below).

To sum up, BDI and CODAGE do not tackle the same
issues, and are not exactly concerned with the same kind
of cognition process: CODAGE focuses on alternatives and
decision-making while BDI focuses on plans and reasoning.
Therefore, when the emphasis is made on planning, nothing
prevent from using a CODAGE agent to select a plan within
a BDI architecture. Similarly, one could add a BDI agent
within the MAS architecture in CODAGE in order to imple-
ment some practical reasoning and planning process within
a complex decision making. Again, this is yet a theoretical
view, and further work is to be done in that direction to
study the mutual benefits of BDI and CODAGE.

5.2 Limitations and future work

At first, we need a more complete experimental validation
of our model. In section 4, we presented some experimen-
tal results of the Biais et al ’s experimental market that are
encouraging as the global results look like the one observed
in the experiment. CODAGE is a “white box” which pro-
duces a decision process to explain human data in a human-
readable form. However, we lack many informations and
expertise about this experiment, since we did not have ac-
cess to it. As many symbolic systems aimed to model men-
tal behavior, we need many informations (heuristics, an-
chors, initial probabilities, game rules...) to be inserted
into the agents. We are now looking for an experimental
market to set up, with an associated methodology to define
how the necessary knowledge will be obtained. Concerning
the validation process, we could use external experts (e.g.
economists, traders) to assess to model and/or we could put
real decision makers “into the loop”, that is we have real de-
cision makers that play against our artificial macro-agents.

Second, concerning the current model itself, one shall note
that we introduced saliences only for facts and not for alter-
natives. But, when the tree of alternatives is enough devel-
oped, too many branches might be explored simultaneously.
This could affects the stability of the system, and is not
“cognitive-like” as it violates bounded rationality. There-

SRecently, Norling proposed to incorporate some elements
of Folk Psychology into BDI, by adding an ability to learn to
recognize situations and select appropriate plan based upon
this [17]. This is done by adding a metal-level plan with a Q-
learning reinforcement algorithm to select plans. However,
the rest of BDI architecture remains unchanged



fore, we need to implement the salience notion at alterna-
tive level, allowing only one alternative to be salient at the
same time. We need to determine the rules to manage this
salience of an alternative, that is to define what makes an
alternative salient.

Third, we need to incorporate learning into the system,
so the CODAGE agent becomes more adaptive. In order to
overcome the influence of prior knowledge, and to enhance
the reliability of the decision system, we plan to introduce
reinforcement learning, where the critical parameters will be
affected by the results of actions. The first step would be to
have salience values learned. To do so, we could use the rein-
forcement learning of the RALF neural network, a cognitive
architecture designed to set the parameter values in order
to get a positive reward as much a possible (RALF does not
optimize reward, but find a satisficing solution) [12].

Finally, the CODAGE architecture is intended to be as
much generic as possible. It could be viewed as an agent-
based decision framework where different decision heuristics
and biases could be implemented. We should move further
into that direction, and try to incorporate new types of agent
(e.g. emotional), new kinds of biases and heuristics.
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