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2 France Télécom R&D - Orange Labs

Samuel.Thiriot@lip6.fr, Jean-Daniel.Kant@lip6.fr

Abstract. It is common to define the structure of interactions among
a population of agents using the social network metaphor. Most agent-
based models were shown to be highly sensitive to that network, so the
relevance of simulation results depends directly on the descriptive power
of that network. When studying social dynamics in large populations,
this network cannot be collected, and is rather generated by algorithms
which aim to fit general properties of social networks. However, more pre-
cise data is available at a country scale in the form of socio-demographic
studies, census or sociological studies. These “scattered statistics” pro-
vide rich information, especially on agents’ attributes, similar properties
of tied agents and affiliations.
In this paper, we propose a generic methodology to bring together these
scattered statistics with Bayesian networks. We explain how to generate
a population of heterogeneous agents, and how to create links by using
both scattered statistics and knowledge on social selection processes. The
methodology is illustrated by generating an interaction network for rural
Kenya which includes family structure, colleagues and friendship. That
network is constrained by data available from statistics and field studies.

1 Context & problematic

1.1 Problematic

The principle of agent-based models is to reproduce collective dynamics from
local interactions. So in any agent-based simulation, the modeler requires a de-
scriptive model of interactions in a population. As these relationships are rela-
tively stable [1], it became common to represent them using the social network
metaphor : the structure of interactions is represented by a graph G(A,L), with
A the population of agents and L the links between these agents. This structure
was shown to have a dramatic influence on the dynamics of various agent-based
models. The direct consequence is that the descriptive power of the structure
determines the relevance of simulation results. To ensure that the generated re-
lationship network is descriptive, it should be studied as a modeling problematic:
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the structure of relationships should be a simplification of social interactions, and
comply with knowledge on the modeled population.

While the interaction network can be collected by interview when the popu-
lation is small, such a data collection becomes intractable for larger populations.
Hence, a lot of models deal with country-scale populations, including models of
opinion dynamics, virus propagation or information dynamics. In our case, we
are interested in modeling diffusion of innovations [2], and propagation of infor-
mation about these innovations [3]. In this field, the lack of descriptive model
of interactions was pointed out as one fundamental limitation of models [4]. It
is common to use network generators to describe such a large population. A
network generator is an algorithm which, given several parameters, generates
networks compliant with one or more properties observed in real networks.

Ideally, a network generator should satisfy the following requirements (noted
R). (R1) Generate models of large populations, in order to improve the
descriptive power of agent-based models for large-scale simulations. (R2) Rep-
resent the different kinds of relationships linking two agents, because
interactions do not occur in the same way across different relationships. For in-
stance, finding a job was shown to be more efficient when activating so-called
“weak ties” (for instance far family) [5]. (R3) Detail attributes of agents in
the network of interactions. That is justified by three main reasons. First, the
attributes of individuals influence their judgment and decision-making (e.g. in
diffusion of innovations [4]), so they should be available in the model. Secondly,
attributes influence the frequency or nature of interaction: spatial distance re-
duces frequency of exchanges, differences in ethnicity and interests decrease the
normative influence, etc. Thirdly, it was shown (as explained in 1.2) that individ-
ual characteristics determine the choice of acquaintances of an agent, therefore
agents’ traits should be taken into account during network generation.

1.2 Key findings for social networks

Decades of research in social networks highlighted several key findings which to-
day are widely accepted. A stream of research explored social selection processes
[6] in order to understand how agents create ties. It appeared that individuals
exhibit a strong tendency to create relationships with people who share similar
characteristics (homophily) [7]. Two individuals sharing a common affiliation
(event, project or workplace) also have more chances to bond and interact fre-
quently [1]. Transitivity implies that two individuals sharing a common acquain-
tance are more probably connected together; in fact they have more chances to
meet and to create a tie because of a common friend. These observations are
no longer questioned, so (R4) a relevant network of interactions should
comply with processes of social selection.
The stream of social network analysis also described statistical properties shared
by social networks, including a surprisingly short average distance between indi-
viduals, a high clustering rate (there are groups or communities in which individ-
uals are strongly interconnected), and a low density [1]. A power-law distribution



of degrees was also observed in various datasets (most individuals have few ac-
quaintances, while few have a high degree of connectivity). It was explained by
the so-called preferential attachment principle, which states that new individuals
in a network will connect more probably with nodes which already have a high
degree of connectivity.

Beyond these general properties of social networks, each national institute
of statistics publishes detailed data for its country. Statistics describe who the
individuals are by quantifying characteristics like gender, age, ethnicity, socioe-
conomic class, incomes, marital status, etc. They also study what people do:
being employed or not, type of activity, participation in associative life, sport,
etc. These activities can often be interpreted as affiliations, with detailed in-
formation on agents which are part of the institution (common characteristics
of workers like educational level, socioeconomic class or geographical location)
and on the affiliations themselves (size, location). More qualitative knowledge
also exists on the structure of families, as well as statistics about the number
of children or household composition. When this kind of data is not collected
at a large scale, it is still available from field studies focused on more precise
phenomena. As an illustration for this paper, we chose to model social relation-
ships in rural Kenya, for which we have no information of our own. Demographic
statistics [8], sociological studies on the structure of families [9] and field stud-
ies on diffusion of contraceptive use (e.g. [10,11,12]) constitute many sources of
information. Surprisingly, no network generator uses these scattered statistics.
However, they constitute an appreciable part of knowledge on the structure of
interactions. We claim that these (R5) scattered statistics should be taken
into account while generating a network of interactions.

1.3 Existing models

The generators mostly used for agent-based models are small-world networks and
scale-free graphs [13]. The first generates networks which are highly clustered
with a short average path length, while the second implements the preferential
attachment principle. These models, proposed by physicists, generate highly styl-
ized networks in which social relationships between heterogeneous agents become
links between nodes. They neither comply with knowledge of social selection pro-
cesses, nor rely on statistics available for a given population. To summarize, they
do not satisfy our requirements R2, R3, R4 or R5.

In the context of social network analysis [1], a lot of models were proposed
(see [6] for a synthetic picture). Existence of a link between two agents a1, a2 ∈ A
is considered to be a random variable La1,a2 which takes the value 1 if a link
exists, and value 0 if not. Random graphs with attributes generate links given a
vector of agents’ attributes Att: p(La1,a2 = 1|Att(a1), Att(a2)). If one uses only
this constraint, a tie between two agents is independent of any other tie with
other agents, in contradiction with transitivity evidence. This assumption was
removed by markov random graphs [14] by allowing two links to be dependent
if they have a node in common. In this case links are noted as the conditional
probability: p(La1,a2 = 1|La1,a3 = 1, La3,a2 = 1), with a1, a2, a3 ∈ A. Recent



extensions of these models [6] take into account both links created given agents’
attributes and transitive links; to date, they remain limited to one or two at-
tributes at most [6].
This formalism is powerful enough to describe homophily and transitivity. Its
relevance was proved by fitting data collected from small groups. It was also
shown [6] that affiliations or degree of an agent may be considered to be at-
tributes, so the formalism also enables the generation of graphs with power-law
degree distribution and affiliations. In short, they fulfill R3 and R4. However,
they include special parameters which require ad hoc collection of data, so their
application remains limited to small groups (in opposition with R1). Moreover,
in these small groups, it was never necessary to distinguish different kinds of
relationships, contrary to R2.

1.4 Approach

We propose to use scattered statistics (R5) available for a given country (R1) to
generate more representative networks of interactions. The generated relation-
ship network G(A,L, Att, T ) will detail agents’ attributes Att in the population
(R3), which are taken into account during the network generation. The network
will include several kinds of relationships T (R2), so the user of this network
may infer the interaction network given the kind of relationship (see 4.1). As the
model is intended to bring together several sources of information on a popula-
tion in order to parameter the generator, we describe a methodology (see 2) to
intuitively formalize knowledge on agents’ attributes and links using Bayesian
networks. The formalism, inspired by markov random graphs, enables the rep-
resentation of the key processes of social selection (R4). Then (in section 3), we
explain how a population of heterogeneous agents can be generated and how the
relationship network is created. Insights into the minimum size of population,
detection of statistical discrepancies, and into statistical properties of generated
networks are provided in section 4.

2 Methodology

2.1 Choice of agents’ attributes and link types

Step 1 The modeler should firstly define the types of social links T that
should be represented in the relationship network. T enumerates links poten-
tially leading to different interactions in the model, or those created by different
processes. As proposed previously in markov random graphs [14], some kinds of
relationships can be generated given agents’ attributes T Att, while others are
created by transitivity T trans. In the example of Kenya, we choose to represent
links leading to interaction about contraceptive use. Field studies indicate that
spouses discuss that topic, parental advice has a normative influence, and that
women retrieve information from friends, siblings and colleagues [11]. We define
links created given agents’ attributes T Att = {spouses, motherOf, colleagues,
friends}. Links involving more than two agents depend on links already created,
and are formalized by transitivity: T trans = {fatherOf, siblings}.



Fig. 1. The agent BN used to describe interdependencies between Kenyan socio-
demographic attributes. Nodes in bold are the number of links to create for each
link type.

Step 2 Next, the modeler has to select agents’ attributes Att which are known
- or supposed - to influence the probability of a link to be created. Of course,
that selection is conditioned by data availability, and takes into account the
purpose of the agent-based model. Typically agents’ attributes contain socio-
demographic characteristics (age, gender, socioeconomic class, ethnicity, etc.)
and places where the agents have frequent interactions (going to school, fre-
quenting a workplace, etc.). We assume the number of links per agent for each
kind of relationship to be an attribute: ∀t ∈ T , RCa

t ∈ Att(a). This choice of in-
cluding the number of links as an attribute could seem counter-intuitive, because
it was often considered to be an independent density parameter [6]. This choice
is justified by the following reasons: (i) the number of links per agent is available
from statistics, and varies across the kinds of relationships. (ii) The number of
links is strongly correlated to other agents’ attributes; for instance the number
of children of a married woman depends on her age. (iii) The number of links is
often considered to be an explanatory variable for the individual decision-making
process, therefore it should be implemented as an attribute. For example, adop-
tion of contraceptive by a woman increases with the number of its children [10].
In the example of Kenya, marital status, age and gender attributes are required
for nearly all kinds of links. As field studies indicate that most discussions take
place during daily activities [12], we added the variable work to represent them,
with possible values “collect water” or “work in market”. Spatial location is also
required because spouses always live in the same place; in the same way, young
children always grow up near their mother.

2.2 Formalization based on Bayesian networks

Step 3: represent agents’ attributes using Bayesian networks. Attributes of indi-
viduals in a real population are strongly interdependent: marital status depends
on age and gender, socioeconomic class is highly correlated with location and
education level, etc. Generate an heterogeneous population of agents requires a
relevant formalism for these complex interdependences. That formalism should
be generic enough to represent any kind of data. Most of the time, data available
for a population is presented as statistics linking one attribute to another. For
instance, the number of children per woman is provided given marital status and



age [8, p. 57]. This kind of statistic can be translated, without loss of generality, to
conditional probabilities, like: p

(
RCa

motherOf = {0...10} | age(a), married(a)
)

.
In this viewpoint, attributes of agents are considered to be random variables. We
propose to use a Bayesian network [15] (BN), named agent BN in this method-
ology, in order to formalize these interdependencies. Each agent attribute in
Att is represented by a variable in the BN. The domain of a variable defines
the values the attribute can take. For instance in graph 1, the variable gen-
der has for domain Dgender = {male, female}, Dmarried = {yes, no}, and
DRC motherOf = {0...10}. Root variables define initial probabilities. In Fig 1,
the variable ageDetail defines the probability for an individual picked randomly
from the population to be aged 0,1,2 up to 100 years; this probability is avail-
able from the age pyramid of the target population. A directed link between
two variables V1 → V2 means that V2 probabilities can be calculated using the
parents, and only the parents. V2 embodies a conditional probability table rep-
resenting the probability to take each value DV2 given all the possible values
in the domains of its parents (here, V1). No link means that variables are as-
sumed independent. It does not mean that variables are independent in reality,
but rather represent our lack of knowledge (or our willingness to simplify that
knowledge) of the dependencies.

In our application to Kenya, probabilities in the agent BN depicted in Fig. 1
come from the US Census Bureau, from the Kenyan demographic and health sur-
vey [8], and from field studies (e.g. [10,11,12]). Note that we used convenience
variables to simplify formalization of data: in agent BN 1, the variable ageSlices
simplifies the detailed age to 5-year slices, which are often used in published
statistics. Another benefit of BN is the ability to highlight evident discrepan-
cies in data. For instance, a social scientist will immediately notice in (Fig. 1)
the absence of a link between gender and age, while the age pyramid in most
of countries shows significant differences between genders (indeed, Kenya is a
particular case of symmetrical age pyramid).

Step 4: represent links probability using Bayesian networks. Links created given
attributes T Att are defined by p(La1,a2

t = 1|Att(a1), Att(a2)). They can be used
to represent a large range of phenomena, including homophily, affiliation, pref-
erential attachment, or spatialization. As this probability is conditional, it can
also be represented by a matching BN. An example of such a BN describing re-
lationship spouses in Kenya is depicted in Fig. 2. In this matching BN, one can
recognize two instances of the agent BN (on the left) representing attributes of
two different agents of the population. On the right, a special node with domain
{yes, no} define whether a link can be created between these agents. Nodes in
bold define constraints on linkage. In this BN, we arbitrarily define that agent
1 (top) is a male and agent 2 (bottom) a female (marriage in Kenya is hetero-
sexual). Node ageWife projects the probable age of the wife of the man a1 (on
average 10 years younger), and variable rightAge ensures that the wife a2 com-
plies with that age (using an identity probability table). The node sameLocation
only takes the value yes if both agents live in the same location. The final node



Fig. 2. Matching Bayesian Network for link type spouses. On the left, the agent
BN for agents 1 and 2.

“linkSpouses”, which determines whether two agents can be linked together,
takes the value “yes” only if all of its parents have for values “yes” (AND op-
erator). The nodes a1 created spouses and a1 remaining spouses ensure that we
will only create as many links of type t as required by RCa1

t and RCa2
t and no

more. Thus a wife will only be linked with one husband. Other links in T Att are
defined in the same way. Friends are probably the same age and probably live
in the same town. Mothers are linked to children whose age is compliant with
their own age, and they always live in the same location when these children are
young. Colleagues are defined as agents sharing the same activity in the same
location.

Links created by transitivity T trans are also random variables. They are
noted: p(La1,a2

t1 = 1|La1,a3
t2 = 1, La3,a2

t3 = 1), with a1, a2, a3 ∈ A, t1 ∈ T trans,
t2, t3 ∈ T . This formalism is quite intuitive and will not be detailed further here.
In our example, the link “fatherOf” is defined by transitivity with p(La1,a2

fatherOf =
1|La1,a3

motherOf = 1, La3,a2
spouses = 1) = 1 (only transitivity enables the description of

father-children links; it couldn’t be described as a matching BN, because a man’s
children have to be the same as those of his wives). In the same way, siblings are
created by transitivity across mother and father links. With a lower probability,
friendships links are created by transitivity between friends.

3 Generation of the graph

3.1 Generation of a heterogeneous population

All the variables Att in the agent BN will become agents’ attributes with the
same domain. For each agent a ∈ A to be created, we generate a prototype agent.
The process to generate a prototype simply consists of using the agent BN in
a generative way: for each variable V ∈ Att of the agent BN (in the ordinal
order, so root variables are processed first), a value V = v is selected randomly



Fig. 3. Example of evidence propagation when the Bayesian network is used to gen-
erate agents’ attributes. Here monitors (boxes in the figure) display the probabilities
for each variable to take each value (note that some of these monitors are truncated).
(top) probabilities with no evidence (bottom) probabilities when evidence is set.

in the domain of V , given probabilities p(V = v|parents(V )) defined in the
BN. When value V = v has been chosen, a corresponding piece of evidence
p(V = v) = 1 is put in the BN. Evidence, in the theory of BN, represents a
known information. Putting evidence in the BN allows the computation of child
variables given the values of attributes already selected. For instance in Fig. 3,
before any piece of evidence (top), the probability for someone randomly picked
from the population being married is 29.69%. When attributes ageDetail and
gender have been randomly selected respectively to 15 and male, and used as
evidence, the posterior probability for the current agent to be married falls to
1.90%. When all the agents are generated in this way, the statistical distribution
of their attributes complies with the distribution described by the BN.

3.2 Creation of links

Now that all agents have been created in the population A, each agent having
its attributes Att(a) defined, we have to link them by using the matching BN.
For each kind of relationship t ∈ T Att, we constraint the matching BN for t by
providing evidence for link creation: as our aim is to link together agents with link
t, we set evidence on variable p(link spouses = yes) = 1. Given this evidence,
probabilities for attributes of a1 and a2 are updated, and some probabilities in
attributes’ domains fall to zero. For instance, in the case of “spouses” link, the
probability of agents 1 and 2 being younger than 15 years falls to zero; they
also cannot have “married=no”. In other words, probabilities in the matching
BN given evidence of link creation designate two sets of candidates for linking
Ct
1 and Ct

2. The matching process will remain limited to these sets. Then, we
iterate across candidates Ct

1 and randomly select as many acquaintances among
Ct
2 as required by RCa1

t . For each agent a1 ∈ Ct
1, we load its attributes and use

them as pieces of evidence in the BN. After a run of the inference engine, the
probabilities for agent 2 define a restricted set Ct

2|Att(a1) ⊂ Ct
2 of candidates

for linkage given agent 1 attributes. In our application to Kenya, for link type



Fig. 4. Generated relationship network (left) Zoom in one agent (right)

spouses, C1 is the set of husbands and C2 the set of wives. When one chooses
an agent a1, given the constraints on matching, the set C2|Att(a1) limits C2 to
wives who live in the same location as a1. The selection of a candidate is done
by generating a prototype agent as explained before; if that prototype cannot be
found, a fallback solution consists of randomly picking one agent in Ct

2|Att(a1)
(note that the fallback solution can bias statistical distribution in the population;
in our example, it is possible to link a husband with an older wife). When no
fallback solution can be found, this is when C2|Att(a1) = {∅}, agent a1 remains
orphan, but will never be tied with an incompatible agent (in our example, no
man will be said to be married with a too young woman nor with a woman
having attribute “married=no”). These errors will be studied in section 4.2.

After having processed all link types defined by matching BN, transitive links
are created using the probabilities p(La1,a2

t1 |La1,a3
t2 , La3,a2

t3 ) formalized in step 2.

4 Generated network

4.1 Usage for social simulation

The resulting graph G (A,L, Att, T ) includes links L of different kinds (L =⋃
t∈T Lt), and provides the values of agent attributes Att for any agent in the

population A. The structure of relationships described by the generated network
obviously depends on agent BN and matching BN provided by the modeler as
parameters. In our application to Kenya, the population covers the whole age
pyramid, and describes attributes depicted in Fig. 1. Moreover, as shown in
Fig. 4, each agent is positioned in its family environment; agent M54 (for Male,
54 years) is married with two wives F28 and F42, and has 7 children, including
one daughter F24 who herself is married and a mother. He is also tied with his
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Fig. 5. Error rate given population size (left). Statistical properties of the gen-
erated relationship network (right)

own mother F71 and brother M42, but not with his father - probably because he
is not in the age pyramid (no longer alive). He his also tied with colleagues and
friends (not represented in the figure to improve readibility). That structure is
described at the scale of 50,000 agents depicted in Fig 4 (left).
To use this relationships’ network for simulation, the modeler may simply de-
fine probability to interact given the kind of relationship: ∀t ∈ T , pt

interact, so
pinteract(a1, a2|La1,a2

t ) = pt
interact. He/she may also choose a finer granularity

by defining the probability of interaction given attributes Att, for instance to
represent the fact that spatial distance decreases the probability of interaction.
In this illustration, we focus on interactions about contraceptive use [11]. In
our case, no interaction occurs across links between young children and their
parents. As the topic of contraceptive use is sensitive in Kenya, probabilities of
discussion between spouses are low, as between a mother and her own parents.
In fact, women who are still fertile and are concerned by the topic mainly discuss
it with their female friends, and often with their brothers-in-law (link sibling).
The resulting network of interactions is a network in which links are weighted
by probabilities; it is by far sparser than the network of relationships.

4.2 Errors and statistical properties

While BN describe a theoretical population with continuous probabilities, we
generate a discrete population and link agents only when a suitable candidate
exists. This limitation necessarily leads to a bias in the statistical properties of
the population. Two kinds of errors may appear during generation. Errors in
statistical distribution may appear because the generated population A is not
large enough given the combinations of attributes’ values described by the agent
BN. These errors are measured by learning the agent BN on data, and quanti-
fied as the average difference between theoretical and measured probability. As
shown in Fig. 5 (left), these errors (bottom curve) remain low and are nega-
tively correlated to the population size. Errors in matching may appear when
no candidate is found to link several agents, and are quantified as the rate of



the total number of links required by RCt on the number of created ties. If this
error decreases while the population size increases, then errors are only due to
the discrete nature of agents: there will always be a number of agents, which
can not be connected because their theoretical peer was not created. As shown
in Fig. 5, this error rate quickly drops above a given population size. Given our
parameters, a population of 10,000 agents is the minimum to reduce errors. If the
matching error rate remains high when the population size increases, it means
that agent BN and/or matching BN are incompatible. In Fig. 5, the curve for
the married link shows that the number of wives per man is not compatible with
the proportion of married wives. In this case, statistics (or assumptions) used to
build BN should be checked and corrected.

Figure 5 (right) depicts the evolution of statistical properties of the rela-
tionship network. Density is low (under 0.01). Transitivity (sometimes called
clustering rate) is high, and becomes stable above the 10,000 agents threshold.
Links defined across spatial locations (for family, work, and with low proba-
bility friendship) play the role of shortcuts, so the average path length in the
model grows very slowly (around 4.8), exhibiting the so-called “small-world”
property. The average degree is in theory defined by attributes RCt. In fact, it
is only reached when all the required links are created (above 10,000 agents),
then sticks to its theoretical value.
At evidence, there is a minimum population size to satisfy constraints defined by
the matching BN. The more the matching BN are constraining, the higher the
threshold. Above this threshold, statistical properties remain remarkably stable.

5 Discussion

In this paper, we proposed a methodology to formalize various statistics avail-
able for the population (R5) to generate a simplified network of relationships at
a country scale (R1). The resulting network includes agents’ attributes (R3) and
different kinds of relationships (R2), so the modeler can define with more preci-
sion if interaction takes place. The network exhibits a high clustering rate, low
density and a low average path length. Formalism enables modelers to comply
with evidence on social selection processes (R4) like affiliation, homophily and
transitivity. We illustrated the methodology by generating a network of relation-
ships in rural Kenya in which socio-demographic studies, sociological findings,
and qualitative observations on affiliation are put together to reproduce familial,
work and friendship relationships.
The choice of Bayesian networks to formalize scattered statistics makes the fusion
of different statistical sources more intuitive, threfore any social scientist can use
this generator. BN also facilitate the generation of a heterogeneous population
of agents and the creation of links between these agents.

The purpose of this methodology is to generate a model of relationships in
a population. Thus, the generated graph is only a simplification of real relation-
ships given available data, and do not target the same precision as models at a
smaller scale. However, the network generated is rooted in reality by using the



available statistics and observations of the modeled population. In some way,
we hope it fills the gap between models proposed by social scientists (highly de-
scriptive, but limited to small populations) and generators physicists (generate
large populations with a low descriptive power). We plan to soon publish the
software which implements the generator.
We decided to illustrate this paper with social interactions in rural Kenya be-
cause of the relative simplicity of its social structure. The next step is to model
more complex populations of industrialized countries (more affiliations, socioeco-
nomic classes, attributes). Our agenda of research also includes the investigation
of dynamics supported by generated networks, especially in the frame of infor-
mation diffusion, and the formal analysis of generated networks’ properties.
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