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Abstract

Most agent-based models include a social network that describes the
structure of interactions within the artificial population. Because of the
dramatic impact of this structure on the simulated dynamics, modellers
create this network for it to match criteria of plausibility (e.g. the small-
world property). Networks are actually created by one network generator
compliant with these criteria, like the Watts-Strogatz algorithm in the
case of small-world networks. However, this practice comes to study the
model’s dynamics over the specific networks generated by one algorithm
instead of the dynamics over the class of networks of interest, possibly
inducing a strong bias in results. We identify three problematics related
to this bias: (i) representativity of a network generator to a class of net-
works, (ii) conclusiveness of simulations over a class of networks and (iii)
the gain in conclusiveness when refining the criteria for network choice.
We propose an experimental protocol and instanciate it on small-world
networks for epidemics, opinion and culture dynamics. We show that (i)
Watts-Strogatz networks are not representative of small-world networks
(ii) simulation results over small-worlds are arguably inconclusive, and (iii)
even small-world networks having the same size, density, transivity and
average path length do not lead to coherent results. Beyond questionning
the relevance of simulation results obtained from artificial networks, this
research also constitute one more argument for the exploration of other
approaches that are not solely focused on networks’ statistical properties.
Keywords: Simulation, Small World, Social Networks, Social Simula-
tion, Epidemics, Opinion Dynamics

1 Introduction

1.1 Foreword

Lets us take the case of a modeler willing to study the Influenza epidemics with
the help of an agent-based model. Following common practices, he will use an
interaction network to describe the structure of interactions within the artificial
population, which is known to have a dramatic impact on simulation results.
Because simulation results will be used for crucial decision-making like the defi-
nition of a vaccination strategy, the modeler will try to use a plausible network.
A quick review of common practices will teach him that (i) many statistical in-
dicators were recently proposed, but their genericity was not yet demonstrated
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(ii) real networks are proved to comply with the small-world phenomenon (iii)
agent-based modelers classically generate small-world networks using the fa-
mous Watts-Strogatz algorithm. After a (hopefully) careful parameter setting
for his epidemic model, he will thus explore its dynamics over Watts-Strogatz
networks and submit his/er recommendations for fighthing Influenza. However,
this practice suffer a potential flaw: our modeler argues of the plausibility of his
results because simulations are based on a class of networks that is plausible,
while his simulations actually take place over specific networks generated by one
algorithm. In practice, there is not evidence that simulation results over the
Watts-Strogatz networks are representative of the dynamics of the same model
across all the possible networks. There is even no evidence that simulations in
the whole class of networks would be conclusive at all; it is even possible that
trying to reduce the space of possible networks by refining the criteria for net-
work choice (like a precise value of the average degree) would not lead to more
conclusive results.

1.2 Problematics

This problematics extends to computational simulation in its whole and goes
beyond the specific case of the Watts-Strogatz small-world networks. Whatever
the criteria assumed to characterize real networks (small-world, skewed distri-
bution of degree, assortativity, etc.), modelers eventually use one or two specific
network generators (possibility an ad-hoc algorithm of their own) to actually
create networks compliant with these criteria. We identify three potential flaws
and the corresponding problematics related to this topic:

• Questioning the generator representativity to a class of networks comes to
evaluate whether the dynamics using the specific networks from a given
generator are similar to the dynamics of the very same model over other
networks of the same class. In the case of small-world networks, it comes
to study whether the dynamics of a model over Watts-Strogatz networks
are peculiar to these networks, or if they are similar to other small-worlds
in general. If the difference between these dynamics is important, Watts-
Strogatz networks cannot be said representative to the class of small-world
networks; thereby simulations based on Watts-Strogatz networks only can-
not be extrapolated to the possible dynamics occurring over the class of
plausible networks. This problematic actually questions the relevance of
any conclusion based on computational simulation over artificial networks.

• Assessing the conclusiveness of simulations over a class of networks comes
to check whether the dynamics of a model over the whole class of networks
that are assumed to be plausible (rather than networks from one sole
generator) lead to conclusive or inconclusive results. In the case of small-
worlds, simulations over the whole space of small-worlds networks may
lead to so inconclusive results that the model would fail to play its filter
role (Legay 1973) and thereby be useless. In case of inconclusiveness of
simulations over a class of networks, the need to refine the criteria that
define that class of networks would be proved.

• The criteria refinability potential refers to the possibility to provide more
precise (quantitative) criteria for network choice, such that simulation
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results become conclusive. In the case of small-worlds, when modelers use
a plausible average degree for their networks (e.g. (Small & Tse 2005)), it
comes to assume that refining the small-world criteria with a quantitative
value will lead to more precise results. One more time, there is no evidence
that other artificial networks having exactly the same characteristics would
not lead to similar conclusions. In fact, we show in this paper that even
networks having similar size, average degree, clustering and average path
length may lead to inconclusive results.

1.3 Related work

Several studies already highlighted that different artificial networks lead to
different dynamics, as shown by the various reviews on this topic (Albert &
Barabási 2002; Newman 2003; Boccaletti et al. 2006). For instance, epidemic
dynamics were shown to differ across random networks, Watts-Strogatz small-
world networks (Watts & Strogatz 1998; Newman & Watts 1999; Moore & New-
man 2000) or Barabási-Albert scale-free networks (Pastor-Satorras & Vespignani
2001; May & Lloyd 2001; Eguiluz & Klemm 2002). In a similar way, opinion
dynamics over networks were studied over small-worlds (Suo & Chen 2008; Def-
fuant 2006; Weisbuch 2004; Amblard & Deffuant 2004) and scale-free networks
(Stauffer & Meyer-Ortmanns 2004). However, these experiments are driven in
different experimental settings, with different implementation and parameters,
thus failing to deliver a comprehensive look of the differences of dynamics of the
very same model over various networks.

Few transverse experiments compared the dynamics over different networks.
Dekker compared three models of organization over networks having different
properties (Dekker 2007). Opinion dynamics over scale-free, small-world and
real networks were compared by Cointet & Roth (Cointet & Roth 2007a,b); Ru
also studied the impact of communities of the dynamics of opinions (Ru & Li-
Ping 2008). Klemm compared culture dynamics over various complex networks
(Klemm et al. 2003). Deffuant also highlighted the difference in dynamics when
using random networks, regular lattices and small-world networks for opinion
dynamics (Deffuant 2006). Crepey analyzed the influence of the characteristics
of real networks, scale-free and random networks on epidemics (Crepey et al.
2006). All these studies reveal important differences in the dynamics depend-
ing to the networks; however, none tackled the three novel problematics listed
before, that are focused on the conclusiveness and confidence of simulation in
general rather than on the dynamics of one specific model.

The search for novel indicators that characterize social networks is already
on the center of the tremendous activity devoted to complex networks (Jackson
2008; Newman et al. 2006), leading to the definition of many novel indicators
(Costa et al. 2007), quickly followed by new network generators that mimic
these properties. In another stream of research, many researchers work on
the building of networks from local and plausible behaviors, arguing of the
importance of network plausibility (e.g. (Roth 2007)). However, as long as
the limits of existing artificial networks are not clarified, the necessity of this
difficult quest remains difficult to defend.
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1.4 Outline

We first (2) introduce some formalism to clarify the problematic of defining cri-
teria for network choice, and point out that this choice in not only based on
the plausibility of networks, but rather on the possibility to obtain conclusive
simulation results over the space of networks defined by these criteria. After
setting up the general protocol to investigate the interplay between criteria for
network choice and dynamics, we describe (3) the experimental setting used for
the experiments focused on the small-world phenomenon (five network genera-
tors and nine samples of the space of small-world networks). Section 4 presents
simulation results over the space of small-worlds and on networks having similar
characteristics. As discussed in the last part of the paper (5), these experiments
demonstrate that the definition of what small-world networks are is too im-
precise to lead to coherent simulation results. Moreover, simulations ran over
Watts-Strogatz networks are shown not to be representative of the ones ran over
other networks.

2 Approach: Criteria, Networks & Dynamics

2.1 Formal problematics

The definition of criteria for assessing the plausibility of networks is usually an
implicit and discursive process. In order to clarify this problematic, we start by
formalizing the concepts of network spaces and their impact on dynamics. This
formalism will facilitate the description of the common practices, the potential
flaws pointed out in introduction, and justify the experimental setting used in
this paper.

2.1.1 Criteria & network spaces

small-worlds scale-free

with communities

Figure 1: Illustration of the whole space of networks X , the subspaces of small-
world, scale-free, or community-structured networks, and the specific subspaces
XWS and XBA corresponding to the networks generated resp. by the Watts-
Strogatz and the Barabási-Albert algorithms

The problematic of defining the structure of interaction for a simulation run
comes to select one network Xsim among the space of all the possible networks
X . Following the common practices in agent-based modelling, the space X will
here be assumed to contain only unweighted and undirected networks. The
real structure of interactions Xreal that supports the real social phenomenon is
unknown1: extensive data collecting is intractable because of both its prohibitive

1Not only the real structure of interactions is unknown and unobservable, but it could
also be said not to exist at all. Social networks are a metaphor (Breiger 2004) that enable us
to represent and analyze the complex patterns of interactions; networks are a construction of
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cost and the unavoidable biases in network collecting and sampling (Scott 2001;
Alba 1982; Frank 1978). Modelers rather use artificial networks they estimate to
be plausible, because they comply with evidence on the characteristics of several
real networks. Thereby modelers start, even in an unconscious and implicit
way, by defining a restricted set of the properties they believe to characterize
real networks. Put in a formal way, this selection comes to define criteria
of plausibility Eplausible that restrict the space of all possible networks to the
subset X plausible ⊂ X of networks assumed to be plausible given Eplausible.
Incidentally, a subset of networks X plausible defined by given criteria may also
be name a “class” of networks. In practice, the criteria for network choice
Eplausible are a set of propositions related to the statistical properties observed
in real networks; these propositions are often qualitative. For instance, when
modelers argue that they “use a Watts-Strogatz small-world network because
of its compliance with both the high clustering rate and the short average path
length observed in real networks”, they define criteria of network plausibility
Esmallworlds = {high clustering, short average path length, low density}.

2.1.2 Random network generators

Once the choice of criteria to assess network plausibility is made, modelers use
random network generators to create the network Xsim that will be used for
a simulation run. A random network generator Gj is a generative algorithm
that was built such that the networks it creates are compliant with a set of
criteria of interest Ei, thus creating networks in the subspace of networks X i.
As an example, the famous Watts-Strogatz β-model was created to reproduce
the properties EqWS (Watts & Strogatz 1998).
Being random network generators, these algorithms involve a stochastic com-
ponent during the generation process. A generator Gj may thus be said to “ex-
plore” the subspace of networks X j . In practice, the only guarantee offered by
network generators is that the network they build comply with the constraints:
X j ⊂ X i (e.g. the Watts-Strogatz algorithm create networks compliant with
the small-world phenomenon).
It is important to note that that networks generated by Gj do not cover the
entire space X i of networks compliant with these properties. As illustrated in
figure 1 for the space of small-world networks X smallworlds, the Watts-Strogatz
generator only creates networks having a Poisson-law distribution of degree,
while the entire set X smallworlds also contains networks having a fat-tailed dis-
tribution of degrees or composed of many communities. The representativity
problem mentioned in introduction is precisely due to the fact that networks X i

generated by a given algorithm Gi only constitute specific examples of the class
of networks thought to be plausible X plausible (see 3).

2.1.3 Conclusivity of simulation results

Simulations of a model M may be viewed as a projection (in an intuitive rather
than mathematical understanding) from the space of networks X to the space
of possible dynamics D (see figure 2). As said previously, a model that wouldn’t
restrict the space D wouldn’t play its filter role (Legay 1973); in other words, a
model that predicts that everything is possible is of few interest, because it does

ours rather than a real object.
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simulation

Figure 2: Simulation of a model viewed as a projection from the space of net-
works X to the space of dynamics D, with Dsmall world the possible dynamics
using all the plausible networks, and DWS the dynamics over networks XWS

generated by the Watts-Strogatz algorithm. The generator is said not represen-
tative of the class of networks if the dynamics DWS does not covers the space
of possible dynamics Dsmall world over all small-world networks.

not prove that some hypothesis encoded in the model is true or false (in the
case of an explicative model) nor reduces the space of possible future dynamics
(in the case of a predictive model). We name here “conclusiveness” the ability
of simulations over a space of networks to play this filter role. While the choice
of networks is mainly argued to be a matter of plausibility (as reflected by
the classical sentence “we used a small-world network because it complies with
evidence [...]”), it should also reduce the space of networks enough for simulation
results to be conclusive.

To clarify this important point, let us take as an example an SIR model of
epidemics. The dynamics of such a model may be studied in a two-dimensional
space DSIR, the first dimension being the proportion of contaminated people
(dead or recovered) at the end of the process and the second dimension the
duration of the epidemics. Figure 3 depicts, as an illustration, three examples
of simulation results in this space DSIR. The left figure depicts a purely hypo-
thetical case of uniform random results, learning us nothing about the possible
dynamics in a population. The figure on the center is also of few interest, be-
cause it mainly means that the entire population may or not be contaminated,
with variations in duration proportional to the extend of the epidemic. The right
figure is more interesting, because it depicts a two-mode regime, with probable
extension of the epidemics to about half of the population, and less probable ex-
tension to 80% of the population. Obviously, the interpretation of the dynamics
of a model is a difficult process that is a part of the modelling process; however,
the gain in model usefullness (or simulations’ conclusiviteness) between figures
A and C is hardly contestable.

Let us now come back to the impact of the criteria for network selection Ei,
by taking into consideration the fact that simulation resultsD2

SIR are obtained by
networks selected using permissive criteria E2, while the more insightful results
D3

SIR are obtained with more precise criteria E3. As we argued that D2
SIR is

useless while D3
SIR is conclusive, then the criteria E2 are also less interesting

than E3. In other words, our purpose as modelers is not only to define criteria
Eplausible that delimit a space of plausible networks, but Eplausible should also be
constrainsting enough for simulation results to be conclusive in the corresponding
space of dynamics Dplausible

SIR .
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Figure 3: Examples of simulation results in the the space of dynamics (duration,
contagion) of an epidemic model. These examples illustrate the concept of
simulation conclusiveness. (left) an hypothetical case D1

SIR where simulation
results would be uniformly random; (center) example of dynamics D2

SIR over the
space of small-worlds; (right) dynamics D3

SIR for one specific network generator.

2.2 Experimental protocol

Having defined the qualitative process of generator choice in a more formal way,
we can now clarify the problematics related to the interplay between criteria of
network choice and the corresponding dynamics, and the experimental protocol
that may answer these problematics. The experimental protocol is defined for
given criteria of network choice Eplausible that define a subspace of plausible
networks X plausible ⊂ X and a model M whom dynamics are studied in a space
DM. The protocol to study the the three problematics exposed in a discursive
way in introduction (2) is:

• Assessing the representativity of a generator Gj to a class of networks
X plausible defined by criteria Eplausible comes to study by simulation whether
the dynamics Dj

M over the networks X j generated by Gj are similar
to the dynamics Dplausible

M supported by networks X plausible. The non-
representativity of the generator Gj will be proved if differences appear
between Dj

M and Dplausible
M . Even if the space of plausible networks

X plausible cannot be extensively explored, it can be “sampled” by using
various random network generators compliant with criteria Eplausible, each
being tested with various parameter settings.

• The inconclusiveness problem for a class of networks may be highlighted
by simply running the very same model on various networks in the space
X plausible. One more time, the exploration X plausible involves the use of
several network generators, in order to sample the space with networks
having different properties (in practice, one can use the samples created
for the next step). If these simulations don’t lead to conclusive results,
the criteria for network choice Eplausible would be proved not to lead to
conclusive results, suggesting that the criteria for network choice should
be refined.

• The criteria refinability potential can be assessed by defining more pre-
cise definition of the criteria Eplausible and styding whether they lead, or
not, to more conclusive results. For such a study to make sense, several
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precise criteria Ei should be defined. Each set of criteria defines a more
precise subset of networks X i ⊂ X plausible ⊂ X . As before, several random
network generators should be configured for each X i. If simulations over
these spaces X i lead to coherent results, it would suggest that field work
for measuring the quantitative values for criteria would improve simula-
tion results. Else the original criteria would be proved to be insufficient,
even when refined, for obtaining conclusive results, proving the urge to
propose novel criteria for network choice.

3 Experimental settings for small-world

3.1 Application to small-worlds

We now apply the experimental protocol proposed before to the class of small-
world networks. We first (3.2) list the five network generators involved in the
exploration of the space of small-world networks, then (3.3) detail the prop-
erties of the spaces of small-world which will be actually explored during the
experiments. As shown by the various examples listed before (1.3), agent-based
modelling often use Watts-Strogatz2 and/or Barabási-Albert networks to study
the dynamics of models. In the case of small-world networks, the general prob-
lematics formalized before become:

• We argue of the use of Watts-Strogatz networks because of their plausi-
bility; however, are simulations over WS networks representative to the
space of small-world networks that we assume to be plausible ?

• The real criteria for network choice involved here is the small-world phe-
nomenon, Watts-Strogatz networks being only examples of these networks.
If WS networks are not representative of the dynamics, are the dynam-
ics over the space of small-world networks conclusive, or as conclusive as
results obtained using WS networks ?

• If these results are not satisfying, could they be improved by more precise
criteria for network choice, like using precise combinations of network size,
clustering rate and/or average path length ?

3.2 Network generators

We use five network generators to sample the space of small-world networks.
They are selected because of their wide use and the different properties of the
network they generate (see examples in figure 4), as well as for the flexibility
they offer for tuning the characteristics of generated networks throught adequate
parametering.

3.2.1 WS: Classical small-world networks

The famous algorithm proposed by Watts and Strogatz is likely the most used
in social simulation2. We use here the β-model (Watts & Strogatz 1998; Watts

2The seminal Nature paper that describes the Watts-Strogatz generator counts in the
most cited papers in JASSS (Meyer et al. 2009).
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WS: Watts-Strogatz BA: Barabási-Albert SII: Simple Intercon-
nected Islands

FF: Forest Fire GRG: Geometric Random Graph

Figure 4: Examples of small-world networks created by each generator used in
this paper.

1999b), that requires as parameters N the size of the network, nei the neighbor-
hood of the original lattice and prewire the rewiring probability. This algorithm
starts with a regular lattice of N nodes in which nodes are connected with
their nei neighboors (thus having 2.nei degree). It then rewires each link with
probability prewire. In case of rewiring, the link is disconnected from its tar-
get node and reconnected with any other node with uniform probability. The
Watts-Strogatz generator was built to create networks having a short average
path length and an high clustering rate. The distribution of degrees in large
WS networks follows a Poisson law (see (Albert & Barabási 2002, p. 23) for an
overview of Watts-Strogatz networks’ properties).

3.2.2 BA: Barabási-Albert scale-free networks

Scale-free networks, as defined by Barabási and Albert, progressively replace or
complete Watts-Strogatz networks in agent-based simulation. This generator
complies with the scale-free (more exactly, fat-tailed or skewed) distribution
of degree observed in several social networks (e.g. emails (Ebel et al. 2002)
or sexual contacts (Liljeros et al. 2001)). Their simple algorithm (Barabási &
Albert 1999) implements one plausible explanation (among other explanations
(Keller 2005)) of this fact, by growing step by step the network, each novel
node being connected with m old nodes with a preferential attachment to nodes
having already an high connectivity. The parameters of the models are N the
size of the network, m the number of links added for each novel node and α
the power of the preferential attachment (1 being linear). BA networks have
a short average path length (Albert & Barabási 2002, p. 30). They were said
to be small-world networks because their clustering coefficient is higher than in
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a random graphs (Albert & Barabási 2002, p. 31); however, the BA generator
creates networks having a clustering much smaller than WS networks, for same
size and density (Kawachi et al. 2004).

3.2.3 GRG: Geometric Random Graphs

Geometric Random Graphs (Penrose 2003) (GRG) are generated by dropping
randomly N points on a unit torus [0, 1]2, then connecting together all the
points separated by less than a given threshold radius. GRG networks may be
viewed as a metaphor for spatialized networks (Costa et al. 2007) like connec-
tions between houses or villages in rural areas. As depicted in figure 4, GRG
contain sparse areas as well as strongly and totally interconnected sets of nodes
that may be assimilated to communities. The distribution of degree in such a
networks may be approximated with a Poisson law for large networks (Dall &
Christensen 2002). For small networks, geometric random graphs have a strong
clustering rate compared to their density.

3.2.4 FF: Forest Fire

The Forest Fire model was proposed by Leskovec (Leskovec et al. 2007) as
an algorithm that creates networks having most of the properties observed in
real networks, including communities, skewed distribution of degrees, a core-
periphery structure. As in the BA algorithm, the network is grown step by step,
each new node A being attached to m old nodes. Moreover, each time a new link
is created between A and B, A explores the outgoing and incoming neighboors
of B. A create links with outgoing nodes of B with a forward probability p,
and also creates links with incoming nodes of B with probability p.r, with r the
backward burning ratio. As this step is ran recursively, A is said to “burn” all
the possible links.

3.2.5 SII: Simple Interconnected Islands

We also provide a simple model3 that creates networks composed of several
communities (sets of nodes having a strong density). This model, later named
SII for Simple Interconnected Islands, starts by creating n islands of identical
size size. Each island is a random graph in which links exist with probability
p.in. Each island is connected with all the other islands with n.inter links, each
being created between two nodes randomly picked from each island. Density
and transitivity in SSI networks can easily be tuned by varying the n, size and
p.in parameters, while the average path length may be tuned with n.inter. Its
distribution of degree is nearly a Poisson-like one (as each island is a random
network). This average path length remains low, because all the islands are
interconnected. The example of SSI network with this algorithm depicted in
figure 4 corresponds to n = 5 islands, n.inter = 2 links inter-islands, size = 350
and p.in = 0.3.

3This algorithm is highly similar to the one proposed by Newman and Girvan (Girvan
& Newman 2002) as a testbed for community detection, in which two parameters drive the
probability of existence of links respectively intra and inter communities. Our model facilitate
the present experiments due to the guaranteed connectedness of the network.
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3.3 Explored spaces

Having defined our experimental protocol and selected various networks gener-
ators, we present now the criteria for network choice that define the spaces of
networks X i ⊂ X that will be tested in our experiments as samples of small
world networks.s

3.3.1 Space X smallworlds of qualitative small-worlds

The most cited definition4 of small-world is also the more qualitative one:
“small-world networks are characterized by a short average path length and a
high clustering rate” (Watts & Strogatz 1998; Watts 1999a). Note that this
definition implicitly includes the constraints of low density which characterizes
real networks (Wasserman & Faust 1994) (i.e. the network is sparse, the average
degree d being far lower than the network size (Watts 1999a)).

The average path length l is the average of the geodesic distance separating
every pair of nodes in the network. The “short” average path length refers to
surprisingly short number of steps (lower than 10 given measures on available
networks and experiments) observed in very large networks. This “small-world
effect” was popularized by the Milgrams’ experiment (Milgram 1967; Kochen
1989), reproduced by experimentation (Dodds et al. 2003; Travers & Milgram
1969) and measured in real networks (e.g. (Leskovec & Horvitz 2008)). Mathe-
matically, the “short” adjective was formalized as L having approximately the
same value than for an equivalent random graph Watts & Strogatz (1998); Watts
(1999a), which was shown to scale as the logarithm of the number of nodes Erdös
& Rényi (1959); Albert & Barabási (2002).

The clustering coefficient C of a network, also named transitivity or clus-
tering rate, reflects the probability that two nodes are connected, given that
they are both connected to a same third. The clustering coefficient C, which
is the average fraction of pairs of neighbors of a node which are also neighbors
of each other (Watts & Strogatz 1998). This clustering rate was shown to be
high in social networks (Newman & Park 2003). An “high” clustering rate is
mainly understood as being higher than in random networks with same size
and density (Watts & Strogatz 1998), but was also formalized as C � O(N−1)
(Newman 2000).

The general criteria of small-world networks will be noted Esmallworlds.
Put in a formal way, Esmallworlds contains the propositions: Esmallworlds =
{smallworldsextlowdensity, short average path length,high clustering}, each of
these propositions being understood given the definition cited before.

3.3.2 Spaces X i ⊂ X smallworlds of similar small-worlds

In order to compare then dynamics of more or less similar small-worlds, the
various subspaces X i ⊂ X smallworlds of small-world networks are defined such
that each space is characterized by the same values for network size transitivity
as two other spaces. These various spaces are listed in table 1 along with the
properties of networks they contain and the parameters used for generators. For
each space, we configure all the possible network generators such the networks

4Note that we do not reused the more recent and disputable redefinition of small-world
networks which adds the fat-tailed distribution of degree to the mandatory criteria for a
network to be small-world (Amaral et al. 2000)
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Figure 5: Properties of networks generated for all spaces X i projected given
their transitivity and (top) size, (middle) density and (bottom) average path
length.

they generate are compliant with these properties. All the network generators
cannot reach any part of this space. For instance, the Barabási-Albert algorithm
cannot generate networks having both a very high clustering rate such as 0.6
and a low density like 0.01; this generator is thus used only in spaces having
a lower clustering rate. In a similar way, GRG can only generate networks
having a very strong clustering rate, but cannot generate networks having a
short average path length without having a very strong density. In the absence
of predictive measures for all the generators (Albert & Barabási 2002), the
relevant parameters for each generator are tuned empirically.

The characteristics of the networks generated for each space are illustrated
in figure 5 given their clustering and size, density and average path length.
In this figure, each point represents one example of network generated with
the parameters listed in table 1, 100 networks being generated per generator
and subspace. Due to the stochastic component involved in these algorithms,
each generator leads to more or less precise characteristics; these biases in the
properties of the networks belonging to each subspace X i are precised in table 1.
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spaces X i criteria Ei & generator parameters
generators N C l d

X 0 2000± 0 0.015± 0.004 3.7± 0.28 0.004± 0.00004
BA n = 2000, p = 1.0, m = 4
WS n = 2000, nei = 4, p = 0.5
FF n = 2000, fw.prob = 0.007, bw.factor = 1, ambs = 4
SII n = 4, M = 500, p.in = 0.016, n.inter = 10

X 1 2000± 16 = 0.21± 0.032 3.6± 0.53 0.008± 0.003
WS n = 2000, nei = 8, p = 0.181
FF n = 2000, fw.prob = 0.32, bw.factor = 1, ambs = 1
SSI n = 31, size = 64, p.in = 0.240, n.inter = 2

X 2 2000± 1 0.58± 0.01 3.8± 1.33 0.026± 0.0006
GRG n = 2000, radius = 0.09
WS n = 2000, nei = 25, p = 0.040
SSI n = 23, size = 87, p.in = 0.581, n.inter = 1

X 3 1000± 1 0.015± 0.005 4± 0.58 0.004± 0.0022
BA n = 1000, p = 1, m = 3
WS n = 1000, nei = 3, p = 0.495
FF n = 1000, fw.prob = 0.0036, bw.factor = 1, ambs = 3
SII n = 3, size = 333, p.in = 0.017, n.inter = 50

X 4 1000± 8 0.22± 0.03 3.5± 1.003 0.016± 0.017
SSI n = 24, size = 42, p.in = 0.235, n.inter = 1
WS n = 1000, nei = 5, p = 0.017
FF n = 1000, fw.prob = 0.37, bw.factor = 1, ambs = 1

X 5 1000± 7 0.58± 0.013 3.7± 1.06 0.004± 0.03
GRG n = 1000, radius = 0.101
WS n = 1000, nei = 16, p = 0.038
SSI n = 19, size = 53, p.in = 0.6, n.inter = 1

X 6 500± 1 0.03± 0.011 3.2± 0.36 0.015± 0.001
BA n = 500, p = 0.5, m = 4
WS n = 500, nei = 4, p = 0.420
FF n = 500, fw.prob = 0.01, bw.factor = 0.5, ambs = 4
SII n = 3, size = 167, p.in = 0.04, n.inter = 80

X 7 500± 13 0.24± 0.059 3.8± 0.6 0.017± 0.01
FF n = 500, fw.prob = 0.37, bw.factor = 1.0, ambs = 1
WS n = 500, nei = 4, p = 0.15
SII n = 19, size = 27, p.in = 0.29, n.inter = 1

X 8 500± 7 0.58± 0.033 3.9± 1.29 0.034± 0.0043
WS n = 500, nei = 9, p = 0.03
SSI n = 17, size = 29, p.in = 0.635, n.inter = 1

GRG n = 500, radius = 0.1

Table 1: Characteristics Ei of network spaces X i used to explore the space of
small-worlds XSW , with N the number of nodes (network size), C the clustering
rate or transitivity, l the average path length and d the density.
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3.4 Implementation

All the networks are generated and analyzed using the igraph package (Csárdi
& Nepusz 2006) for the statistical sofware named R (R Development Core Team
2009). As most of random network generators in igraph create networks with
redundant or self-links, those are removed during a simplification step. The
simulations are driven with an ad-hoc simulation software interfaced with R
for the generation of graphs. This software is developed in Java, and relies
on various specialized libraries in order to improve reliability of results (e.g.
random numbers are generated using the colt library). The implementation
of each agent-based model was verified by comparing simulation with classical
results from the literature.

4 Experiments on small-worlds

We present now successively the dynamics over these various spaces for three
famous agent-based models, namely the epidemic model (4.1), the opinion BC
(4.2) and the Axelrod model of cultural dynamics (4.3). For each model, we
will define one unique space of parameters, which is intentionally selected for
the model to be sensitive to the network of interaction (e.g. in the case of the
epidemic model, setting the contagion parameter such as the entire population
is for sure contaminated is of few interest). Indicators will be defined for each
model to quantify the final state of the simulation.

Note that these experiments do not aim to explore the dynamics of the model
itself; our ultimate purpose is to assess the relevance of the “small-world” criteria
for network choice and the representativity of the Watts-Strogatz and Barabási-
Albert generators. Also, such an experimental protocol cannot be said to prove
that the dynamics of a model is stable over the space of small-world networks,
as this model could exhibit a different behavior on a subspace of small-worlds
that is not covered by our samples. However, these samples remain sufficient to
prove that dynamics of one model are not similar over the space of small-world
networks.

4.1 epidemic dynamics: SIR

4.1.1 Model

Epidemics are probably the most studied social phenomena in the stream of
complex networks. We use a networked version of the simple and well-known
SIR epidemic model (Kermack & McKendrick 1927; Anderson & May 1991;
Bailey 1957; Hethcote 2000), in which each agent may be in one of the three
states Susceptible (S), Infective (I) or Removed (R). All the agents but two are
initialized in the Susceptible state, the last two being initialized in the Infective
state. At each step of the simulation, all the links are activated in a random
order, and the interaction is managemed between the agents connected by each
link. If one of these agents is Infective and the other is Susceptible, then this
last will shift to the infective state with probability pcontagion = 0.07 at the
end of the step. At the very end of the step, each infected agent may fall to
the Removed state with probability premoving = 0.2. The simulation is stopped
when the system becomes stable, that is when no interaction occurs during 100
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steps.

Dynamics are studied against two criteria: the possible extend of the pan-
demic and the duration of this epidemic. Simulation results will then by studied
in a two-dimensional space DSIR; results will be said to be conclusive if they
reduce the space of possible dynamics in this space in either a quantitative
(extend of the epidemic) or qualitative way (two mode regime - the epidemic
remaining limited to a small fraction of the population or reaching a large part
of it - or one mode).

4.1.2 Results on the whole space of small-worlds X smallworlds
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Figure 6: Dynamics DSIR of the SIR model supported by (left) Watts-Strogatz
networks, (center) Barabási-Albert networks and (right) various small-world
X qWS . Each dot in these figures represents the result of one simulation.

Figure 6 depicts, from left to right, simulation results obtained using Watts-
Strogatz, Barabási-Albert and all small-worlds. These results include all the
parameter settings described in table 1. As shown in the left figure, simula-
tions over Watts-Strogatz networks suggest a two-mode regime, with an high
probability for the pandemic to remain very limited (1% of the population) or
total (more than 95% of the population). While the process in both these cases
appear to be quiet quick (< 50 steps), some simulations using small networks
suggest a third possibility, that is a diffusion ranging probably from 50% up to
90% of the population with an average duration of 70 steps. These last results
are very similar with the simulation results using BA, which also predict a two-
mode regime and possible extent ranging from 50% to 80% of the population.
These simulation results, however, appear to be very specific when compared to
the dynamics over other all small-worlds (right). With the same model and same
parameters, much more intermediate states appear with more or less extension
and more scattered durations. This comparison answers our first question in
the case of SIR: epidemic dynamics supported by the BA and WS networks are
not representative of dynamics in the larger space of small-worlds.

Simulation results on all sampled small-worlds (same figure 6, right) appear
to be inconclusive: contagion ranges from 0% to 99% of the population. This
duration is less than linear given the contaminated population because of the
small-world effect, but varies as much as from 20 to 120 steps. In other words, the
small-world phenomenon, in its qualitative understanding, does not constraints
the space of networks enough to lead to conclusive results.
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4.1.3 Results for small-worlds having the same characteristics X i
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Figure 7: Dynamics Dsmallworlds
SIR of the SIR model given the size of networks.

From top to bottom, spaces in each line correspond respectively to networks
with 2000, 1000 and 500 nodes. From left to right, columns contain networks
having the same clustering rates ( 0.01, 0.21 and 0.58). Note that the results
of WS networks are hidden by the GRG ones for spaces X 5 and X 2.

As depicted in figure 7, spaces X 0, X 3 and X 6 (left column) having a tran-
sitivity rate of 0.01 all lead to qualitatively and quantitatively similar results
whatever the network generator: bimodal regime, same extends, and even same
high dispersion of results in the case of space X 3. However, simulation results
for spaces characterized by an high transitivity 0.58 (X 1, X 4, X 7 in the center
column) exhibit higher discrepancies. Dynamics over FF systematically lead to
an extend of about half the others, because the propagation of the epidemic is
unlikely in the periphery of these networks. In spaces X 4 and X 7 which lead
to bi-modal regimes, simple islands exhibit a one-mode regime, the extend of
the simulation ranging from 0 to 0.8 with equal probability. This fact is due to
the community-based structure which makes more probable the diffusion to all
members of a community, but less probable the transmission to another commu-
nity. Given these observations, simulations over networks of transitivity 0.21
are definitely inconclusive, as the model predicts an extend of 0%, 50% or all the
population, with duration ranging from 30 to 150 steps. In the spaces depicted
in the right column, which group the networks having a very high clustering
rate, results are quiet coherent for all generators but the SII networks, because
of the phenomenon observed in the center column.

As a conclusion, specific combinations of parameters may lead to stable re-
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sults, as for spaces X 0, X 3 and X 6. This observation cannot be generalized,
however: the examples of spaces X 1, X 4 and X 7 prove that small-world net-
works having the same clustering rate, short average path length, density and
size may lead to inconclusive results. No absolute law may even be found to
explain these differences; for instance, FF in the center column leads to a lower
extend of the epidemics, which isn’t the case in the left column.

4.2 Opinion BC

4.2.1 Model

The Bounded Confidence model (Deffuant et al. 2000; Weisbuch et al. 2002;
Lorenz 2007) describes the dynamics of continuous opinions in a networked
population. In this model, each agent holds a continuous opinion xi ∈ [0 : 1].
The initial opinion are initialized with an uniform probability. At each step of
the simulation, one link is randomly picked from the network, and the interaction
between the connected agents is managed. If the opinions of the two agents x
and x′ are too different, that is if |x − x′| ≥ d, then the agents don’t influence
each other. Else the opinion of each agent is changed in the direction of the
other one: x = x + µ.(x′ − x) and x′ = x′ + µ.(x − x′). The dynamics of the
Opinion BC model were extensively studied (Boccaletti et al. 2006, p. 80). The
convergence parameter µ determines how quick the opinions of agents converge,
and seems to have a negligible impact on the issue of the simulation, while the
threshold d directly determines the number of opinions.

We define two indicators for tracking simulations of the BC model: the num-
ber of major opinions and the total number of opinions (whatever the number
of agents sharing them). The rational of these indicators is to investigate, not
only the number of major opinions that may coexist in the same population,
but also the propensity of a structured population to allow the survival of minor
opinions. Minor opinions may survive in a population when agents are weakly
connected to the core of the network, or simply because some agents “hesitate”
between two major opinions, the simulation alternatively changing the opinion
of these agents towards one opinion then the other. To measure the number of
opinions, we discretize the space of opinions in 200 slices, and count the number
of agents in each slice. This number of agents is then normalized by the max-
imum count of agents in a slice; major opinions are defined as opinions shared
by at least one third of this proportion, while minor opinions are all slices that
are not empty. Note that contiguous slices are considered to be one unique
opinion. We stop the simulation after 100,000 steps; as this number is fixed, the
existence of many opinions at stop may reflect simulations where the required
time for convergence is higher.

4.2.2 Dynamics for all networks

Simulation results for Watts-Strogatz and Barabási-Albert networks, depicted
in figure 8 (left and center), are mainly different in the number of minor opin-
ions (ranging from 0 to 45 for WS and 10 to 45 for BA), meaning that BA
always maintain many minor opinions while WS have an higher probability to
converge towards several opinions in the same duration. The average number
of opinions is also different, WS leading with nearly equal probability to 0 (no
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Figure 8: Dynamics Dopinion of the Opinion BC model supported by (left)
Watts-Strogatz networks, (center) Barabási-Albert networks and (right) various
small-world X i. Each point represents the result of one simulation.

major opinion), 1 or 2 major opinions, while BA has 45% chances to lead to 2
major opinions, 40% for 1 opinion and only 14% for no major opinion. These
results for WS and BA are different from the dynamics observed for any network
in our sample (figure 8 right), in which the probability for simulations not to
converge to major opinions is higher, as is the total number of opinions. Inci-
dentally, only FF networks lead with significant probability to the coexistence
of three major and many minor opinions. In these results, neither WS nor BA
is representative of the results observed for all small-worlds.

All these results suggest that no more than three major opinions can survive
in a structured population (in this experimental setting), the configuration with
3 major opinions being far less probable than for 0 to 2 opinions. They also
learn us that no more than 50 minor opinions can survive in the population.
More informative results are provided by the equiprobability of each number of
opinions in the case of WS networks, or by the impossibility to have less than 12
minor opinions for BA networks. As results over all small-worlds do not provide
such a discrimination in the space of dynamics, dynamics over this space may
be argued to be less discriminative and conclusive than the other ones.

4.2.3 Dynamics for similar small-worlds X i

Analysis of simulation results for all subspaces X i (fig 9) reveal a strong sensitiv-
ity to the clustering of networks: simulations over networks having a clustering
rate of 0.58 (right column in the figure) do not lead to as many major opinions
than networks having a lower clustering rate (left and center columns). These
results reveal that denser and more clustered networks require more time to
converge towards major opinions. Even if spaces X 6 and X 3 appear to lead to
similar results in the figure, a more careful analysis shows that important dif-
ferences subsist in these spaces, with SII networks leading to less major opinion
than others. In general, survival of minor opinions is often facilitated by the
core-periphery structure of FF models, while SII networks structured by com-
munities lead to more minor and less major opinions. No general law governs
these results, however, as FF may lead either to numerous (X 7, X 4) or few
(X 0, X 1) minor opinions depending to the subspace in study. The possibility to
obtain more coherent results by a quantitative definition of network properties
is thus not proved yet.
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Figure 9: Dynamics Di
opinion of the SIR model over networks X i having the

same size (lines) and clustering rate (columns)

4.3 Axelrod

4.3.1 Model

The Axelrod’s model of cultural diffusion (Axelrod 1997a,b) stands as a famous
illustration of agent-based models. This networked model was first proposed on
regular lattices, but was recently extended to complex networks (Klemm et al.
2003). In this model, the culture of each agent is formalized as a vector of
cultural features, each of these features being randomly chosen at initialization
from a finite-size set of cultural traits. At each step, one agent i is randomly
selected in the population (this agent is said to be “activated”) and one its
neighbors j selected at random. The probability for these two agents to actually
interact is determined by the similarity of their culture: the more identical values
they have for each feature, the more probable the influence is (see (Axelrod
1997b) for details). In case of influence, the activated agent changes one of his
cultural features (different from the other agent) for the trait of the other agent,
thus becoming more similar to this agent. We will arbitrarily use 5 features and
3 traits for our experiments, leading to 35 = 243 possible cultures.

As the convergence of the model may be very slow, we stop the simulation
after a fixed number of steps. In order to enable the comparison of different
sizes of networks, this number of steps is related to the number of nodes: 250.N .
As a consequence, whatever the network size, each node will be activated 250
times. Factor 250 was chosen because it is sufficient for the individual cultures
to converge to a small set of major cultures. At the end of the simulation,
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we compute the histogram of cultures against the number of individual who
share them. Some simulations may lead to a large number of small cultures
without any large culture, while other may lead to a convergence to less than
10 cultures without any minor culture. As both of these indicators may be
of use for sociological interpretation of simulation results, we will analyze the
dynamics of the Axelrod model on the two-dimensional space having the total
number of cultures (whatever the number of agents that share them) in abscissa
and the number of major cultures (shared by at least 5% of the population) in
the ordinate axis.

4.3.2 Simulations over small-worlds
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Figure 10: Simulation results for the Axelrod model ran over (left) Watts-
Strogatz networks, (center) Barabási-Albert networks and (right) various small-
world networks

Simulations over Watts-Strogatz and Barabási-Albert networks (figure 10
(left&center)) are quiet similar, the only difference being the slightly higher
number of total and big communities in the second case. However, these results
are very different from simulation results over the whole space of small-worlds
(figure 10 (right)), which also contains numerous big communities with few
small communities, the total number of big communities being three times the
number observed over WS and BA networks. In other words, these experiments
prove that simulations of the Axelrod model of culture using Barabási-Albert and
Watts-Strogatz are not representative of the dynamics of the model over small-
world networks in general. Moreover, as for previous models, simulations over
small-worlds in general are very scattered. These results do not enable to assess
the model validity (whatever the number of major and minor opinions observed
in the real population, it corresponds to a possible result of the system) nor
to restrict the space of expected dynamics in the population; we then consider
these results to be inconclusive.

4.3.3 Simulations for similar small-world networks X i

Figure 11 depicts simulation results for each subspace of networks X i. Only
the space X 6 exhibits similar results whatever the network generator; all the
others lead to more or less different results. In spaces X 2, X 5 and X 8 having
the higher clustering, the dynamics over SSI suggests that communities lead
to numerous big cultures and few minor cultures, while GRG and WS lead to
very similar results. In spaces X 1, X 4 and X 7 characterized by an intermediate
value of clustering, FF models always lead to more major cultures and less minor

20



 0

 2

 4

 6

 8

 10

 12

 0  50  100  150  200  250

bi
g

space X0 SII
WS
BA
FF

 0

 2

 4

 6

 8

 10

 12

 0  50  100  150  200  250

space X1 SII
WS
FF

 0

 2

 4

 6

 8

 10

 12

 0  50  100  150  200  250

space X2 SII
WS

GRG

 0

 2

 4

 6

 8

 10

 12

 0  50  100  150  200  250

bi
g

space X3 SII
WS
BA
FF

 0

 2

 4

 6

 8

 10

 12

 0  50  100  150  200  250

space X4 SII
WS
FF

 0

 2

 4

 6

 8

 10

 12

 0  50  100  150  200  250

space X5 SII
WS

GRG

 0

 2

 4

 6

 8

 10

 12

 0  50  100  150  200  250

bi
g

all

space X6 SII
WS
BA
FF

 0

 2

 4

 6

 8

 10

 12

 0  50  100  150  200  250

all

space X7 SII
WS
FF

 0

 2

 4

 6

 8

 10

 12

 0  50  100  150  200  250

all

space X8 SII
WS

GRG

Figure 11: Dynamics Di
Axelrod of the Axelrod model for each space X i. Note

that results for WS networks are superposed with those of GRG for spaces X 2,
X 5 and X 8.

cultures than in SII and WS networks. In the left column that contains results
for networks having a low clustering, BA appears to facilitate the apparition of
major cultures and reduce the number of minor cultures. Given the diversity
of results even in these spaces of networks having the same clustering, density,
size and average path length, the refiniability potential of small-world criteria
appear to be in-existant.

5 Discussion

5.1 Summary

In this paper, we underlined a potential flaw in common practices in compu-
tational simulation: many modelers argue that their simulations make sense
because they use plausible networks, but actually study the dynamics of their
models over specific samples of these plausible networks. We first identified three
possible problematics related to this fact: (i) the possible lack of representativ-
ity of a generator to the class of networks of interest, (ii) the possible lack of
conclusiveness of simulations over a class of networks and (iii) the possibility to
refine the criteria of network choice for reaching (more) conclusive results. We
formalized these problematics using the concept of criteria of network choice,
spaces of networks and spaces of dynamics. We argued that the criteria for
network choice should not only be based on the plausibility of networks but
should also limit the space of plausible networks enough for simulation results
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to be conclusive.
We proposed an experimental protocol to tackle these three problematics,

and applied it to the space of small-world networks, and the two Watts-Strogatz
and Barabási-Albert networks that are often used in agent-based modelling.

5.2 Results for small-world networks

5.2.1 Generator representativity: Watts-Strogatz is not small-worlds

When comparing the dynamics of WS, BA and other network dynamics, it
appears that none of these algorithms is representative of the behavior of the
model in the whole space of small-world models. Watts-Strogatz networks are
only specific examples of small-worlds that lead to specific simulation results.
As a consequence, simulation results (as well as analytical conclusions) obtained
with Watts-Strogatz networks should not be extrapolated to the possible dynamics
of a real system without further analysis. Given these observations, it is of prime
importance to keep this representitivity problem in mind when analyzing the
results of simulations. The semantic shift from “Watts-Strogatz networks” to
“small-world networks”, frequently observed in papers, contributes to the risky
assimilation of the specific networks generated by the WS algorithm to the class
of small-world networks.

Moreover, the similarity of results observed in some cases (spaces X 6 and
X 0 for epidemics dynamics, X 3 for opinion dynamics and X 6 for Axelrod’s
model) when using Watts-Strogatz and Barabási-Albert networks could confuse
modelers, letting them belief that these results are representative of the model
behavior, while our experiments clearly reveal important differences when ex-
ploring other networks. This similarity between WS and BA results is somewhat
ironic, as modelers precisely use them to explore two hypothesis on the possible
distribution of degrees in the real networks.

5.2.2 Simulation conclusiveness: Small-world is not enough

As soon as the lack of representativity of a generator to the class of plausible
networks is proved, results of simulations should not be studied in the spe-
cific case of the network generated by one or two algorithms, but should be
interpreted in the whole space of networks that are assumed to be plausible.
However, we pointed out that the dynamics over this whole space, which are
rarely (if done) explored, may be so scattered that the simulations results would
actually be inconclusive. The definition of which result is conclusive (or not) is
a complex topic that depends on the model and on the purpose of the modeler.
Nevertheless, the results obtained here are arguably inconclusive: epidemic dy-
namics (cf. 4.1.2) predict any extend of the epidemic, thus being as insightful
that a purely random hypothesis, while opinion dynamics and culture dynam-
ics lead to results so disparate that the model could fit any observation from
the field without restricting much the space of predicted states. These results
strongly suggest that the criteria defined by the small-world phenomenon don’t
constrainst the dynamics enough for simulation results to be conclusive.

Claiming the plausibility of results because they are based on small-world
networks is as relevant as claiming their plausibility because of the use of a
network rather than assortative mixing: the “small-world” criteria for network
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choice is necessary - as it was proved to change the behavior of models - but not
sufficient to obtain conclusive results. As discussed later, this problem extends
to any exploration of a space of networks: criteria defined to choose the space
of networks should not only be based on plausibility but also on their ability to
lead to conclusive results.

5.2.3 Criteria refinability: Small-world cannot be enhanced

The very question of refinability of criteria is: can we improve our simulations
results by measuring the values of the properties of real networks ? Intuitively,
refining these criteria is expected to improve the coherency of simulation results:
the more precise the criteria Eplausible are, the smaller the corresponding space
of networks X plausible , the more stable the simulation results Dplausible . For
instance, modelers interested in epidemics often parameter network generator
for them to comply with a plausible average degree of connectivity (e.g. (Small
& Tse 2005)). However, simulation of three models prove that even networks
having similar clustering, density, size and average path length may lead to qual-
itatively and quantitatively different results. Even if, in specific cases, specific
samples of the space of small-world networks are shown to lead to similar re-
sults, simulation conclusiveness is not guaranteed by refining criteria of network
choice. This result confirms the usefulness of taking other characteristics of net-
works into account, like the distribution of degree, assortativity, diameter and
other indicators. However, the conclusiveness of simulation results obtained us-
ing these novel criteria should also be challenged; for instance, even if FF and
BA have both a fat-tailed distribution of degree, our experiments show that
they lead to different results.

5.3 Implications for computational simulation

5.3.1 Explore the space of plausible networks to avoid the represen-
tativity bias

Beyond the specific cases of the Watts-Strogatz and Barabási-Albert generators,
our results suggest that simulations over generated artificial networks are not
sufficient to study the possible behavior of models over what we trust to be plau-
sible networks. This may constitute a fundamental limitation for computational
simulation in its whole. Whatever the network generator you choose (even if it is
a ad-hoc algorithm), results may not be representative to the possible dynamics
(over the networks you belief to be plausible). Worst, as no general method
permits to determine whether the entire space of networks X plausible was exten-
sively explored or not, the relevance of simulation results over artificial networks
will always remain questionable. Nevertheless, the bias induced by the choice
of specific network generators may be reduced by a more extensive exploration
of the space of networks that are assumed to be plausible.

The use of several network generators having different properties and com-
binations of properties, as done in this paper, could help to explore the behavior
of a model over the space of plausible networks. Rewiring algorithms (Kawachi
et al. 2004; Watts & Strogatz 1998; Molloy & Reed 1995) may also constitute
valuable tools to explore this space, as they often guarantee the preservation
of several characteristics of the original networks (e.g. size or distribution of
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degree) while introducing some noise in the structure (see the previous applica-
tions (Cointet & Roth 2007a; Dekker 2007)). The use of other generators and
of rewiring is limited by the cost of such an experiment for the modeler, who
would have to implement other network generators (development cost) and drive
more simulations (computational cost). Moreover, this process should not make
more difficult the communication of results, even if the use of several generators
requires the description of these algorithms to enable replication.

In order to limit the development cost, the development of software or li-
braries interoperable with simulation plateforms may be of help. Several network
generators that explore different subspaces of small-worlds could be identified
(for instance, testing both WS and GRG networks appear to be useless in the
present experiments, as both lead to very close results), thus limiting the num-
ber of algorithms to implement, facilitating communication of simulation results
and saving computational time. The simulation cost can be reduced by avoiding
the systematic generation of networks, which (along with the analysis of their
statistical properties) is very costly. To do so, further research should explore
the possibility to create samples of the network generated by one algorithm that
are representative of the generated networks (for instance, generating thousands
of Watts-Strogatz networks with a given parameter setting is probably enough
to study the dynamics of a model among the various configurations created
by this generator). If such a sampling is possible, a library of networks (large
number of networks compliant with given properties) could be built and shared
with the whole research community, thus enabling replication and preserving
communicability. A good sampling of a space of networks of interests, would
they be small-world or scale-free, could thus be tested at low cost, and be easily
communicated by only citing the reference of the set of networks involved in
simulations.

5.3.2 Identify other criteria to enhance conclusiveness

As observed here for small-world networks, the exploration of the space of net-
works we assume to be plausible may reveal inconclusive results. However, we
are not interested in the specific case of the artificial networks generated by one
algorithm, but rather on the dynamics of our models over the various possible
networks that may exist in the real society (i.e. the plausible networks).

Inconclusiveness may be due to a systemic cause, that is the social phe-
nomenon studied is unpredictable in itself; however, as the identification of
characteristics of real networks is still recent, it is far much probable that other
characteristics of real networks could be included as criteria of network choice,
thus improving the benefit of simulations. Several novel properties were already
identified for real networks (Jackson 2008; Newman et al. 2006), including a
skewed distribution of degree, a core-periphery structure, the existence of com-
munities (Girvan & Newman 2002; Palla et al. 2005), positive assortativity of
degree, spectra of networks (Farkas et al. 2001), clumpiness (Snijders et al.
2006) or node centrality (Borgatti 2005). However, as demonstrated in this pa-
per, these indicators should not be chosen only for their ability to discriminate
the plausible networks to the implausible ones, but also because they reduce
the space of supported dynamics enough for simulation to be conclusive; such a
checking may be based on the protocol detailed in this paper.
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5.3.3 Explore novel approaches

This paper may be viewed as another criticism of the wide use of artificial
networks for social simulation. Till now, the main criticism is their lack of
plausibility, (Roth 2007; Cointet & Roth 2007a; Pujol et al. 2005). From a
methodological viewpoint, the network generators developed in the stream of
complex networks are simple algorithms that aim only to reproduce some pre-
cise characteristics observed in real networks, that are used out of their initial
purpose and may be irrelevant for the peculiar needs of social simulation.

Several alternative approaches are already explored for the generation of
networks:

• Create the networks using the available part of the real structure of in-
teractions. This approach is notably used to simulate epidemics using
transportation data (Ferguson et al. 2006; Colizza et al. 2007; Germann
et al. 2006). This approach, however, is only usable when data is already
available for the interactions involved in the model, which is rarely the
case in practice.

• Several researchers explore the generation of networks from local and plau-
sible behaviors, using concepts like spatial or social distance (Wong et al.
2006) or social circles (Hamill & Gilbert 2009). Nevertheless, even if these
models rely on plausible rules of network generation, these ones cannot
be easily compared with real networks (unless using statistical properties
that were shown here to be too permissive), thus allowing uncertainty to
persist about their relevance.

• The very last approach consists in using data available on the general con-
ditions of interaction to generate the network. For instance, the network
may be generated from census data ((Eubank et al. 2004)), individual
interviews (Amblard & Deffuant 2001) or household data (Meyers et al.
2005). However, these methods lack genericity (thus complicating the
communicability of simulation results) and require the development of
ad-hoc generative algorithms, therefore failing to constitute a tool easily
usable by the numerous newcomers in agent-based modelling.

The ideal network generator should integrate the benefits of all of these ap-
proaches, by using available observations from the field as parameters, and us-
ing plausible local rules to generate the network of interactions, while remaining
tools usable without deep skills in computer science. Recent approaches devel-
oped specifically for social simulation (Nota Bene: removed for blind review )
just start to investigate this promising lead.

5.4 Conclusion

Social networks constitute a complex problematic which studies an object that
cannot be observed from the field while having a dramatic influence on simula-
tion results. Moreover, this object is used as a parameter for most agent-based
simulations. We first highlighted the lack of representativity of artificial net-
works generated by one algorithm to the space of plausible networks, and pro-
posed to rely on libraries of networks as testbeds. However, our experiments
also suggest that constrainsts based on the statistical properties of networks
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may be to permissive to obtain conclusive results, even when refining criteria
for network choice by using quantitative values. As inconclusive results reduce
dramatically the benefits of social simulation for decision-making, the proposal
of new approaches for the description of interaction networks constitute a topic
of first importance for social simulation in its whole.
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